National Center for HIV, Viral Hepatitis, STD, and TB Prevention Division of Viral Hepatitis

Laboratory Diagnostics of Viral Hepatitis B: Testing Challenges and Case Scenarios

Jan Drobeniuc, MD, PhD

Perinatal Hepatitis B Prevention Program Summit Houston, TX May 23rd, 2024

Content

- Hepatitis B viral structure and role of various components in the diagnostics of HBV infection.
- HBV genotype distribution
- Challenges in the diagnostic of HBV infection
- Using testing algorithms to facilitate accurate HBV diagnostics
- Diagnostic quandaries and potential resolution

Viral Hepatitis

One Clinical Case Definition:

- Acute illness
- Discrete onset of symptoms <u>and</u> jaundice
- Or elevated serum aminotransferases

Five Causative Agents:

- Hepatitis Viruses A E
- 13 serodiagnostic markers
 - HAV, HBV and HCV tests approved by FDA
- At least one molecular test for each virus
 - FDA-approved for HBV, HCV NAT
- No FDA-approved Tests for HDV and HEV diagnostic
 - CLIA validated at CDC

Hepatitis B Virus (HBV)

- Hepadnaviridae family
- Virion (40-42nm)
 - Surface antigen (HBsAg) part of the envelope
- Core particle (28nm)
 - Core antigen (HBcAg)
 - Extracellular form (HBeAg)
- Partially double-stranded DNA (3.2 kb)
- Nine serologic subtypes of HBsAg:
 - adrq+, adrq-, ayr, ayw1, ayw2, ayw3, ayw4, adw2, adw4

HBV Genotype Distribution

10 HBV genotypes (A-J)

- North America: A, D, G, F, H, I
- South America: F
- Mexico & Central America: H
- Greenland: B
- NW Europe, Central Africa: A, D
- Eastern Europe, Mediterranean region, Middle East, South Asia: A, D
- West Africa: E
- Asia: B, C
- Japan: J
- Vietnam, Laos: I
- Australia: A, D, C

Routes of Transmission

- Percutaneous, mucosal, or nonintact skin exposure to infectious blood, semen, and other body fluids.
 - HBV is concentrated most highly in blood, and percutaneous exposure is an efficient mode of transmission.
 - Infected hepatocytes secrete very high levels of virus particles resulting in viremia of up to 10⁸-10¹⁰ particles per ml
 - HBV is most infective of all blood borne viruses- 100x more than HIV

HBV is transmitted primarily through:

- Birth to an infected mother
- Sexual contact with an infected person
- Sharing contaminated needles, syringes, or other injection-drug equipment

Less commonly through:

- Needle-sticks or other sharp instrument injuries
- Organ transplantation and dialysis
- Interpersonal contact through sharing items such as razors or toothbrushes or contact with open sores of an infected person
- However, with successful prevention of perinatal transmission, these routes may take centerstage.

Newly Acquired HBV Infection

Incubation Period:

From exposure to onset of jaundice From exposure to onset of high ALT

Symptomatic:

anorexia, malaise, nausea, vomiting, abdominal pain, and jaundice

Fulminant liver failure

Case fatality rate

Mean: 90 days (60 – 150 days)

Mean: 60 days (40 - 90 days)

Age up to 12 months: <1%

1-5 years old: 5 - 15%

>5 years old: 30 - 50%

1-2% of symptomatic cases

Overall: 0.5 - 1%

http://www.cdc.gov/hepatitis/resources/professionals/pdfs/abctable.pdf

Potential for Chronic Infection after Acute Infection

Chronic HBV infection develops in:

- 90% of infants after acute infection at birth
- 25%–50% of children newly infected at ages 1–5 years
- 5% of people newly infected as adult

Overall, approximately 25% of persons who become chronically infected during childhood and 15% of those who become chronically infected after childhood die prematurely from cirrhosis or liver cancer

Serologic Tests for the Diagnostic of HBV Infection

Chemi-Immunoluminescent and Enzyme Linked Immunosorbent Assays (CIA and ELISA) for antigens and antibodies

- HBsAg
 - Detects at least 97% of HBV infections
 - High analytical sensitivity (0.1ng)
 - Confirmation test of an HBsAg screening-positive results is required if NAT not feasible
- Total and IgM anti-HBc;
 HBeAg/anti-HBe
- Qualitative or Quantitative anti-HBs

FDA approved IVD tests for HBsAg

- QuidelOrtho VITROS
 - Abbott ARCHITECT
 - Abbott Alinity
- Siemens Advia Centaur
 - Roche Cobas **Elecsys**

Nucleic Acid Tests for the Diagnostic of HBV Infection

HBV DNA detection and quantification

- FDA Approved High performing platforms:
 - ROCHE COBAS
 - Various generations and throughput (e.g. 5800, 6800, 8800)
 - ABBOTT M2000 and Alinity M
 - Panther Hologic

Genotyping and Molecular Epidemiology

- S-gene or whole genome sequencing can provide evidence of genomic mutations or transmission linkages
 - Not FDA-approved and can be used for research only (RUO)

Acute Hepatitis B Virus Infection / With Recovery

Acute Hepatitis B Virus Infection / With Recovery Window Period

Acute Hepatitis B Virus Infection Early phase post-exposure: HBsAg/HBV DNA Alone

Hepatitis B Virus Infection / Chronic

Hepatitis B Virus Infection / Vaccination

Hepatitis B Virus Infection Interpretation of Test Results

Serologic Test Result	HBsAg	Total Anti-HBc	lgM anti-HBc	Anti-HBs
Detected following vaccination or for 3-6 months following receipt of HBIG	Negative	Negative	Negative	Positive
False-positive (Susceptible) / Past Infection (Resolved) / "Low level" chronic infection (Unlikely to be infectious)	Negative		Negative	Negative
Chronic Infection			Negative	Negative
Past Infection with recovery (Immunity to new infection)	Negative		Negative	
Acute Infection	Negative			Negative
Early Acute Infection / Receipt of the hep B vaccine within several weeks	Positive	Negative	Negative	Negative
Never infected (Susceptible)	Negative	Negative	Negative	Negative

Hepatitis B e Antigen (HBeAg)

- Within hepatocytes, HBeAg and HBcAg are generated from the same region of the HBV DNA. The newly formed HBeAg is then secreted from the hepatocyte into the blood circulation.
 - In contrast, the HBcAg is assembled into the HBV core and incorporated into the intact virion.
- Although abundant HBeAg is produced, it is not a component of the intact hepatitis B virion or subviral particles, and it is not required for viral infection, assembly, or replication.
- The presence of HBeAg is typically associated with elevated HBV DNA levels and high infectivity, but it is variably present in persons with chronic HBV infection.
 - Certain precore and basal core promoter mutations are associated with reduced or abolished HBeAg protein production.

Testing Algorithm Recommended when the Assessment of HBV Infection based on Incomplete HBV Testing is Inconclusive

Hepatitis B Virus Infection Interpretation of Test Results from Testing Algorithm

Serologic Test Result	Total Anti-HBc	Anti-HBs	HBsAg	HBeAg
Never infected (Susceptible)	Negative	Negative	Not Tested	Not Tested
Post-vaccination Immunity to new infection	Negative	Positive	Not Tested	Not Tested
Past Infection with recovery (Immunity to new infection)	Positive	Positive	Negative	Not Tested
False-positive (Susceptible) / Past Infection (Resolved) / Resolving recent infection (Window Period) / "Low level" occult chronic infection (Unlikely to be infectious)		Negative	Negative	Not Tested
Chronic Infection ("Low level" infection - likely asymptomatic "Carrier")		Negative	Positive	Negative
Chronic Infection Active replication - likely highly infectious)		Negative		

Hepatitis B Virus Infection Interpretation of Test Results with HBV DNA

Serologic Test Result	Total Anti-HBc	Anti-HBs	HBsAg	HBV DNA
Early Acute Infection Detected mainly during the blood donors screening by NAT in recently infected organ donors; contacts in an actively developing outbreak Follow up test allows for the resolution of quandary	Negative	Negative	Negative	Positive
Follow up test allows for the resolution of quandary- likely confirming Early Acute Infection with HBsAg+ and anti-HBc+		Negative		
"Low level" occult chronic infection		Negative	Negative	

Diagnostic Challenges: Interfering Substances

IgM anti-HBc	8	42	0	0	0	2 (25%)	0	7 (87.5%)
IgM anti-HAV	30	30	0	0	1 (3%)	0	2 (6.7%)	0
Total anti- HAV	30	30	0	0	0	30 (100%)	0	30 (100%)

- Legend: a = no biotin chemistry; FP = false positive; FN = false negative; ND = Not Done
- HBsAg test does not use biotin as a secondary label. Test was not done because there is not expected interference from Biotin for HBsAg.

Kodani et al. 2019:

Diagnostic Challenges: Prozone Effect

A) In a sandwich immunoassay, the antigen binds to the primary antibody and the secondary labeled antibody forms a complex to release the signal.

- B) Excessive antigen binds to primary and secondary antibody, preventing the complex from forming.
 - If false negative HBsAg is suspected, dilution may resolve the discordance.

C) In competitive assays (e.g., anti-HBc T), cross reacting substances can compete for the binding site of the detection antibody.

Diagnostic Challenges: Vaccination and Transient HBsAg Positivity

Figure 3

Dot plots of Cut-Off Index. The Cut-Off Index is plotted for four populations: patients who received hepatitis B vaccine 7 days or less prior to HBsAg testing, patients who received vaccine 8–14 days prior to HBsAg testing, patients with grayzone HBsAg reactions not attributed to vaccine or to actual hepatitis B virus infection, and patients with grayzone reactions who appear to have actual hepatitis B virus infection. The dashed line is at the Cut-Off Index of 1 which divides non-reactive from grayzone.

Diagnostic Challenges: HBsAg Mutations

TABLE. HBsAg lab results for the case patient by facility and testing instrument

Date collected	Laboratory facility	Testing instrument	Result
November 11, 2010	A *	Advia Centaur XPT	Negative
December 8, 2016	A*	Advia Centaur XPT	Negative
December 9, 2016	B*	Advia Centaur XP	Positive
December 14, 2016	C*	Advia Centaur XP	Positive
January 5, 2017	A*	Advia Centaur XPT	Negative
February 2, 2017	A*	Advia Centaur XPT	Negative
March 2, 2017	A*	Advia Centaur XPT	Negative
March 2, 2017	C*	Advia Centaur XP	Positive
May 7, 2017	CDC	Vitros Eci	Negative
May 7, 2017	CDC	Abbott ARCHITECT	Positive
May 23, 2017	NPHL	Advia Centaur XP	Positive
July 25, 2017	D*	ETI-MAK-2 PLUS	Positive
July 25, 2017	E*	Vitros 3600	Negative

Abbreviation: NPHL = Nebraska Public Health Lab.

MMWR Notes from the Field describe False-Negative HBsAg test result in a Hemodialysis Patient

Testing at CDC:

- High HBV DNA levels (14,200,000 IU/mL), anti-HBs levels of 114 mIU/ml indicative of immunity, and
- HBsAg positivity in one assay but negative in another.
- Sequencing of the S gene identified an G145R surface antigen mutation

Mutations in HBsAg can result in falsenegative HBsAg results

MMWR 2018 Mar 16; 67(10): 311-312

^{*} Deidentified commercial laboratory.

[†] False-negative result.

Why Other Tests besides HBsAg are Needed?

Table IV. Interpretation of initial reactive HBsAg from pregnant women with discrepant HBsAg results							
Resolution of initial HBsAg-result	No. (%)	Additional information	No. (%)				
Probable true positive	14 (9.8)	Positive total anti-HBc Positive IgM anti-HBc Vaccination 3 days before HBsAg testing*	11 (78.6) 2 (14.3) 1 (7.1)				
Probable false positive	75 (52.8)	Negative total anti-HBc No HBV DNA detected Technical error reported	67 (89.3) 6 (8.0) 2 (2.7)				
Unresolved	53 (37.4)	No additional serology, no history of vaccination	28 (52.8)				
		Negative IgM anti-HBc Negative IgM anti-HBc, negative anti-HBs	17 (32.1) 3 (5.7)				
		Negative IgM anti-HBc, negative HBeAg	1 (1.9)				
		Negative anti-HBs	1 (1.9)				
		Negative anti-HBs, negative HBeAg	2 (3.8)				
		Positive anti-HBs, unknown vaccination history	1 (1.9)				

HBeAg, hepatitis B e antigen.

*HBsAg in vaccine is reported to be detectable for ≥18 days after vaccination.

Lab Results Review Triade

Interpret lab results in the Clinical, Populational and Epidemiologic Context

- Comorbidities and Inappropriate testing without a thorough review of history contributes to an increased rate of false-positives
- Using an Appropriate algorithm helps eliminate falsepositive results
 - E.g., isolated low level HBsAg in a non-risk subject, without anti-HBc is likely a FP.
 - HBeAg in an HBsAg-neg person is a lab algorithm deviation and HPC should retest

Consider Test specificity

- Variability in performance of test from different manufacturers: Design, Automated vs Manual vs Rapid POC tests
- Manual test-formats have an increased potential of human error
- The specificity of the test varies in the general vs high risk population

Review Processed or Raw Data

True positive results are likely to have high SCR or OD values

Test #	HBsAg	Total anti- HBc	IgM anti- HBc	Anti-HBs	HBV DNA	HBeAg	Other
1 (5/1/23)						<mark>+</mark>	
2 (5/18/23)	-	-	-	+(33.85 mIU/mL)	-		
3(5/24/23)	-					+	

- Mom with no history of hepatitis B, unaware of HepB vaccine status.
 - Came to US from Peru; EDD: 8/5/2023
- Interpretation: The tests order on 5/18/23 was informative. Although negative HBV DNA and IgM anti-HBc were reassuring, they were rather unnecessary.
 - With a consistent negative HBsAg result, HBeAg testing is not recommended.
- PHBPP Action: To rule out a lab error, a follow up triple screening (HBsAg, anti-HBc total, anti-HBs) can be recommended before the EDD

Test #	HBsAg	Total anti- HBc	lgM anti- HBc	Anti-HBs	HBV DNA	HBeAg	Anti-HBe
1 (1/19/23)	+					+	
2 (2/3/23)	-	-		+(51.15 mIU/mL)		-	-

- Mom with unknown HepB vaccine status
 - Baby received HBIG and HepB at birth.
- Interpretation: Decision to Vax+HBIG was correct due to presence of markers of active infection during pregnancy. But lack of anti-HBc total make the results dynamic inconsistent.
- PHBPP Action: To rule out a lab error, a follow up triple screening (HBsAg, anti-HBc total, anti-HBs) can be recommended

Test #	HBsAg	Total anti- HBc	IgM anti- HBc	Anti-HBs	HBV DNA	HBeAg	Anti-HBeAg
1 (1m>Pr)	+	-			-		
2 (Pr)	+	-			-	+	

- Mom fully vaccinated in childhood
- Interpretation: Lack of anti-HBc total and HBV DNA inconsistent with HBsAg and HBeAg results.
- **PHBPP Action:** Since there is evidence suggesting maternal HBV infection, administer Hep B vaccine and HBIG.
 - To rule out a lab error, a follow up triple screening (HBsAg, anti-HBc total, anti-HBs) can be recommended.

- State Bureau of Disease Prevention and Control received a HBsAg quantitative monitor test from a provider who was testing an infant followed in the perinatal hep B program.
- Interpretation: Per 2018 AASLD Hepatitis B Guidance, HBsAg quantitation can be useful in managing patients receiving peg-IFN therapy. However, HBsAg quantitative monitor test is not an FDA-approved diagnostic test and cannot be used to diagnose the presence or absence of HBV infection.

PHBPP Action: Triple screening (HBsAg, anti-HBc total, anti-HBs) can be recommended

For more information, contact CDC 1-800-CDC-INFO (232-4636)
TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

