2016
HEALTHY TEXAS BABIES
DATA BOOK

Prepared by: Texas Department of State Health Services, Office of Program Decision Support

Completion of this Data Book was supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) under grant number and title for grant amount (Grant Number B04MC29327, Maternal and Child Health Services, $33,899,658, 100%). This information or content and conclusions are those of the author and should not be construed as the official position or policy of, nor should any endorsements be inferred by HRSA, HHS or the U.S. Government.

PRAMS is supported, in part, through funding from the Centers for Disease Control and Prevention (CDC; Grant #1U01DP006204-01) and the Texas Maternal and Child Health Title V Block Grant Program. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the views of the CDC.

Suggested citation:
Kormondy, M. and Archer, N. 2016 Healthy Texas Babies Data Book. Austin, TX: Division for Family and Community Health Services, Texas Department of State Health Services, 2016.
CONTENTS

Purpose ... 1

Data Sources & Terms ... 2
- Data Sources Used .. 2
- Data Terms .. 3

Birth Demographics ... 5
- Maternal Race/Ethnicity .. 6
- Maternal Age .. 7

Infant Mortality & Morbidity ... 9
- Infant Mortality Rate .. 9
- Causes of Infant Death .. 11
- Preterm Birth .. 13
- Low Birth Weight ... 15
- Perinatal Periods of Risk .. 17

Infant Health Practices ... 21
- Breastfeeding .. 21
- Placing Infants on their Back to Sleep .. 23

Prenatal Care ... 24

Maternal Health .. 26
- Smoking ... 26
- Pre-Pregnancy Obesity .. 28
- Diabetes & Hypertension .. 30

Delivery .. 32
- Low-Risk Cesarean Delivery Rates .. 32
- Labor Induction Rates in Low-Risk Mothers ... 34

Conclusion ... 37

More Information on Infant and Maternal Health in Texas .. 38

References ... 39

Appendix A: Tables for Select Figures .. 42
The 2016 Healthy Texas Babies Data Book provides an overview of infant health in Texas, as well as maternal health before and during pregnancy, which directly impacts infant health. It is hoped that the trends and disparities in infant health outcomes highlighted in this report can help programs and policymakers make data-driven decisions about how to improve these outcomes in Texas. This data book is not meant to repeat results found in other places; rather, it is meant to bring different data sources together to be analyzed and reported in a way that creates a cohesive view of the status of both infant health and maternal health during pregnancy in Texas.
DATA SOURCES & TERMS

DATA SOURCES USED

Vital records data (information from Texas birth, death, fetal death, and linked infant birth-death files), as well as results from the Texas Pregnancy Risk Assessment Monitoring System (PRAMS) survey, were used in this report.

The Texas Department of State Health Services (DSHS) Vital Statistics Unit collects demographic data on all (or the vast majority of) births and deaths in Texas, as well as information on fetal deaths weighing 350 grams or more or, if weight is unknown, occurring at 20 weeks of gestation or more. Vital records files are a rich and comprehensive source of data; however, the quality of birth certificate data is dependent on how accurately birth records are completed by hospital staff or providers. It is also thought that the birth file likely underreports the prevalence of several maternal health indicators, such as diabetes, preeclampsia, and anemia [1, 2]. In addition, 2015 Texas birth and death file data are preliminary (are available for analysis before these datasets have been thoroughly ‘cleaned’ and finalized), and as such, certain 2015 data elements were not presented due to potential data quality concerns. In this report, no geographic information was analyzed or reported using preliminary 2015 data, and outcomes by race/ethnicity were not presented for preliminary 2015 death data. All other years of data used in this report are final.

Data were suppressed in maps when there were fewer than 15 cases, to prevent identification of affected individuals that would be possible with such small numbers, thereby protecting the confidentiality and privacy of these individuals and their families.

In Texas, the PRAMS survey provides the most comprehensive population-based data on maternal health before, during, and after pregnancy. Conducted in partnership with the Centers for Disease Control and Prevention (CDC), DSHS has been implementing PRAMS since 2002. The PRAMS survey asks questions (via mail or telephone) of mothers who have recently given birth on topics such as prenatal care, pregnancy intention, alcohol use, smoking, intimate partner violence, postpartum depression, breastfeeding, infant sleep position, and smoke exposure. Unlike vital records, which include information on almost all vital events (births and deaths) in Texas, PRAMS data are obtained from a sample of Texas women who have given birth. However, CDC provides Texas with an analysis file, which includes survey weights. Use of this file ensures that analyses are representative of all women who have given birth to a live infant and are residents of Texas. The 1,241 women who completed the survey in 2013 are representative of all 380,025 Texas residents who had a live birth. PRAMS data/results are generalizable to women who are Texas residents with at least one live birth within a specific year, whereas the birth file represents all live births in Texas. Because of this, along with potential sampling and reporting differences, PRAMS findings may differ from results obtained from vital statistics data. PRAMS results are reported along with confidence intervals, and the width of the confidence interval – in other words, the distance between its upper and lower limits – is an indicator of the variability, and thus the reliability, of the results. Texas PRAMS data are presented as estimated percentages or prevalence estimates to account for complex sampling and weighting. As with any self-reported survey, possibility of recall bias exists; that is, women may not answer the question correctly or leave it blank because they may not remember the event. However, the schedule of survey mailings and telephone interviews for PRAMS is tailored to minimize this risk.
Despite the few limitations described above, Texas vital records are invaluable sources of data on the status of infant and maternal health, and PRAMS provides much-needed information about maternal risk and health pre-pregnancy, during pregnancy, and post-pregnancy that is not available elsewhere. Both Texas vital records and PRAMS data are used by DSHS and other state agencies and stakeholders to inform, develop, and drive policies and programs to improve the health of mothers and babies, and to understand their emerging health needs. These sources provide a rich understanding of both infant and maternal health, and serve as an important resource for risk factor analysis and for identification of possible avenues for intervention.

DATA TERMS

Baby-Friendly Hospital: A designation given to birthing facilities that offer an optimal level of care for infant feeding (breastfeeding) and for mother/baby bonding. To achieve accreditation as a Baby-Friendly Hospital, a facility must demonstrate a 75 percent exclusive breastfeeding rate or higher among mothers at discharge, must adhere to the International Code of Marketing Breastmilk Substitutes, and must successfully implement the Ten Steps to Successful Breastfeeding, jointly developed by WHO and UNICEF [3].

Body Mass Index: Body mass index (BMI) is a measure of weight-for-height that is often used to classify adults as being underweight, of normal weight, overweight, or obese [4]. In this report, maternal BMI is calculated using the mother’s pre-pregnancy weight and height. BMI categories are defined using the standard cutoffs for adults, even if the mother is younger than 22 years of age.

Causes of Infant Death: Cause of death categories from the National Center for Health Statistics Instruction Manual are used to calculate information regarding the leading causes of infant death in this report. Not all infant deaths in Texas are due to the leading causes shown in the report. Causes of infant death are reported as the number of deaths per 10,000 live births.

Communities: In this report the term “communities” refers to core-based statistical areas (CBSAs) as defined by the U.S. Office of Management and Budget (OMB). CBSAs are micropolitan areas (containing an urban core of at least 10,000 but less than 50,000 population) or metropolitan areas (containing an urban core of 50,000 or more population), and consist of the county containing the urban core area, as well as adjacent counties with a high degree of social and economic integration with the urban core. To be consistent with recent past Healthy Texas Babies Data Books (from 2013-2015), this report uses the U.S. OMB definitions released in 2013, with two exceptions. First, the traditional metropolitan area of Dallas-Fort Worth was divided into three separate areas: Fort Worth-Arlington, Dallas-Plano, and the remaining outlying counties of the metropolitan area. Second, the county of Galveston was removed from the Houston-The Woodlands CBSA so that this county could be analyzed separately.

Gestational Age: Gestational age is used to calculate whether or not a birth is preterm, as well as to calculate when in pregnancy the mother first received prenatal care. However, exact gestational age is often unknown and must be estimated. Beginning with final 2014 data, the National Center for Health Statistics has changed the variable used to estimate gestation [5]. The current standard, starting in 2014, uses the obstetric estimate of gestation on the birth certificate, and not a combination of last menstrual period and the obstetric estimate, as had been done in the past. This current standard for calculating gestational age is used throughout the report.
Infant Mortality: Infant mortality rate (IMR) is defined as the number of infants who died in a given year divided by the number of live births in that same year. This number is then multiplied by 1,000 to calculate the IMR. All of the births that comprise this rate are restricted to those women with Texas listed as their state of residence.

Perinatal Periods of Risk: A comprehensive approach designed to help communities use data to improve infant and maternal health outcomes. A perinatal periods of risk (PPOR) analysis divides fetal and infant deaths into four risk periods (maternal health/prematurity, maternal care, newborn care, and infant health), based on birth weight and age of death. An excess feto-infant mortality rate (F-IMR) is then calculated for each of these periods, both for the state as a whole and for specific demographic sub-populations. The reference group for each of these calculations is a state-level reference population of mothers with near-optimal birth outcomes [6, 7].

Race/Ethnicity: For information obtained from birth records, fetal death records, or from PRAMS, race/ethnicity information shown throughout this report refers to the mother, not the infant. However, infant death data are classified according to infant’s race/ethnicity. Women who identified themselves as only White or Black and who did not indicate that they were Hispanic were classified as White or Black, respectively. Women who identified themselves as Hispanic were classified as Hispanic, regardless of their race designation. Women of all other races, including multiracial women, were classified as “Other”, as long as the woman did not self-identify as Hispanic. The “Other” category is not homogeneous, and there have been shifts in the demographics of women within this category. Since 2004, there has been an increase in the number of women identifying themselves as multiracial.
The birth rate in Texas has been fairly stable since 2011 (see Figure 1). Texas has the fourth highest birth rate in the United States [8]. In 2015, more than 410,000 babies were born in the state, and there were more than 400,000 births to mothers that live in Texas.

Figure 1
Birth Rate in Texas and The United States, 2006-2015

*2015 Texas and United States data are preliminary
Source: National Center for Health Statistics
Prepared by: Office of Program Decision Support
Oct 2016
MATERNAL RACE/ETHNICITY

Births to Hispanic women make up the largest percentage of all births in Texas, followed by births to White women, Black women, and women classified as ‘Other’ race/ethnicity (see Figure 2).

Although women who are classified as being of ‘Other’ race/ethnicity make up a small proportion of the total number of Texas births, this race/ethnic group has had the largest increase in the percent of total live births over the past decade in Texas (see Figure 2). Over 28,000 births in 2015 were to mothers who classified themselves as Asian, mixed race, or other race/ethnic designations. However, it is important to keep in mind that this group is quite heterogeneous (encompassing many different races/ethnicities), which often limits the interpretability of results for this particular race/ethnic category.

Figure 2
Distribution of Race/Ethnic Groups Among All Live Births, 2006-2015

% of Live Births: 4.2 4.4 4.6 4.7 4.9 5.2 6.3 6.8 7.0

White Black Hispanic Other

2006: 49.6 50.2 50.1 50.1 49.0 48.3 47.8 47.9 47.4 47.4
2007: 11.5 11.3 11.3 11.3 11.5 11.4 11.3 11.4 11.5 11.8
2008: 34.7 34.1 34.1 33.9 34.6 35.0 34.6 34.4 34.3 33.9
2009: 34.7 34.1 34.1 33.9 34.6 35.0 34.6 34.4 34.3 33.9
2010: 34.7 34.1 34.1 33.9 34.6 35.0 34.6 34.4 34.3 33.9
2011: 34.7 34.1 34.1 33.9 34.6 35.0 34.6 34.4 34.3 33.9
2012: 34.7 34.1 34.1 33.9 34.6 35.0 34.6 34.4 34.3 33.9
2013: 34.7 34.1 34.1 33.9 34.6 35.0 34.6 34.4 34.3 33.9
2014: 34.7 34.1 34.1 33.9 34.6 35.0 34.6 34.4 34.3 33.9
2015: 34.7 34.1 34.1 33.9 34.6 35.0 34.6 34.4 34.3 33.9

*2015 Texas data are preliminary
Source: 2006-2015 Birth Files
Prepared by: Office of Program Decision Support
Oct 2016
As in the United States as a whole, Texas has seen a shift in the maternal age of women giving birth over time (see Figure 3) [9]. The average maternal age at birth in 2014 was 27.6 years of age, a significant increase from an average age of 26.5 years in 2006.

The average age for women with a live birth in 2014 differed by region (see Figure 4). Counties with major urban centers tended to have older average maternal ages.
The increase in average maternal age observed over the past decade is likely due in part to a marked decrease in the teen birth rate. Texas, like the rest of the country, has reported dramatic decreases in the teen birth rate, especially since 2007. This drop has been particularly steep for Hispanic and Black youth (see Figure 5). Over the past 10 years, the teen birth rate has declined by 51.5 percent among Hispanic youth, and has declined by 48.0 percent among Black youth.

Although Texas has experienced a steady decrease in the teen birth rate since 2007, as of 2014, Texas was tied with New Mexico for the fourth highest teen birth rate in the United States (among females 15-19 years old) [8].

Additionally, several areas of the state have high teen birth rates when compared to the rest of the state (see Figure 6). Many counties in the border regions of the state and in the Texas Panhandle have high teen birth rates.
INFANT MORTALITY & MORBIDITY

INFANT MORTALITY RATE

The infant mortality rate (IMR) in Texas has been at or below the national rate for the past 10 years (see Figure 7). Moreover, since 2011, the state has consistently been below (exceeded) the Healthy People 2020 (HP2020) target of 6.0 deaths per 1,000 live births.

Figure 7
Infant Mortality Rate in Texas and the United States, 2006-2015

However, racial/ethnic disparities in IMR have persisted in Texas, and it is clear that the overall decrease in IMR observed in Texas over the past decade was not equally distributed across all race/ethnic groups (see Figure 8). IMRs for Black mothers have been twice as high as IMRs for White and Hispanic mothers over much of this timeframe.

Figure 8
Infant Mortality Rate in Texas by Race/Ethnicity, 2006-2014
In addition to race/ethnic disparities, substantial regional differences in IMR persist within the state. In 2014, ten of Texas’ largest metropolitan communities met the HP2020 target of 6 or fewer infant deaths per 1,000 live births (see Figure 9).

Figure 9
Infant Mortality Rate per 1,000 Live Births by Select Communities, 2014

Differences in IMR also exist by maternal age. In 2013, mothers age 40 or older had a higher IMR than mothers of any other age group, followed by young mothers less than 20 years of age (see Figure 10). Mothers in these two age groups comprised 12.4 percent of resident births in 2013.

The Galveston, Brownsville-Harlingen-Raymondville, and Corpus Christi-Kingsville-Alice communities had the lowest IMRs, with these communities all having fewer than 4.3 deaths per 1,000 live births. In contrast, four large Texas communities (Beaumont-Port Arthur, Tyler-Jacksonville, Waco, and Fort Worth) had IMRs higher than 7.3 deaths per 1,000 live births in 2014.
CAUSES OF INFANT DEATH

Overall, congenital anomalies are the leading cause of death for infants younger than one year in Texas (see Figure 11). However, among infants older than 28 days, the leading cause of death is Sudden Infant Death Syndrome (SIDS).

Figure 11
Leading Causes of Infant Death, 2007-2014

NOC: Not otherwise classified
Source: 2007-2014 Death & Birth Files
Prepared by: Office of Program Decision Support
Sept 2016
Leading causes of infant death also differ by race/ethnicity. In 2014, the leading cause of death among Black infants was short gestation and low birth weight, whereas congenital malformation was the leading cause of death among infants of all other race/ethnic groups (see Figure 12).

Figure 12
Leading Causes of Infant Death by Race/Ethnicity, 2014

NOC: Not otherwise classified
Source: 2014 Death & Birth Files
Prepared by: Office of Program Decision Support
Sept 2016
PRETERM BIRTH

Preterm births are those that occur prior to 37 weeks of gestation. Preterm birth rates in both Texas and the nation have decreased over the past decade. However, the preterm birth rate in Texas has consistently been higher than the national average over the past 10 years (see Figure 13).

The reduction in preterm births has been observed throughout the nation. Preterm birth rates have decreased in Texas as well, with rates consistently higher than the national average. This trend is illustrated in Figure 13, which shows the percent of live births born preterm (less than 37 weeks) in Texas and the United States using obstetric estimate of gestation from 2006 to 2015.

When further dividing gestational age into several different categories (including early preterm (<34 weeks), late preterm (34-36 weeks), early term (37-38 weeks), term (39-40 weeks), and late term (41 weeks or more)), a slightly higher percentage of late preterm (34-36 weeks) and early term (37-38 weeks) births were observed in Texas compared to the United States as a whole (see Figure 14).

The source of the data is the National Center for Health Statistics, and the data was prepared by the Office of Program Decision Support in September 2016.
As with IMR, there are substantial racial/ethnic disparities in the preterm birth rate (see Figure 15). Black infants have a higher preterm birth rate than do infants of any other race/ethnic group. However, in the past decade, the preterm birth rate has decreased most rapidly among infants born to Black mothers, which has slightly narrowed this gap in preterm birth rates.

Figure 15
Percent of Live Births Born Preterm (less than 37 weeks) in Texas by Race/Ethnicity Using Obstetric Estimate of Gestation, 2006-2015

Figure 16 shows the percentage of preterm births by county in Texas. Regional differences were observed; many counties in east Texas and in the south coastal region of the state had higher rates of preterm birth than the state as a whole.

Figure 16
Percent of Births That Were Preterm (Less Than 37 Weeks) Using Obstetric Estimate of Gestation, 2014
LOW BIRTH WEIGHT

The percentage of babies born with a low birth weight (weighing less than 2500 grams) has not meaningfully changed since 2006, either in Texas or in the nation. The rate of low birth weight infants in Texas is slightly higher than the national rate, and is currently not meeting the HP2020 target of 7.8 percent or fewer of all live births weighing less than 2500 grams (see Figure 17).

As with IMR and preterm births, Black mothers have a disproportionately high percentage of low birth weight infants (see Figure 18). The rate of low birth weight infants is also higher among mothers in the ‘Other’ race/ethnic category than among White or Hispanic mothers.
Although some counties in Texas met the HP2020 target for percentage of low birth weight infants in 2014, many counties did not (see Figure 19). There were no clear geographic patterns or regional disparities for low birth weight rates within the state.

Figure 19
Percent of Infants Born Low Birth Weight (Less Than 2,500g), 2014

Source: 2014 Birth File
Prepared by: Office of Program Decision Support
Oct 2016
PERINATAL PERIODS OF RISK

Although Texas has made significant progress in reducing infant mortality, data show continued disparities in infant mortality and feto-infant mortality between Black and White women. To better understand these disparities, a perinatal periods of risk analysis (PPOR) was undertaken, which examines the risk of feto-infant mortality during different perinatal periods. Based on birth weight and age of death, fetal and infant deaths were partitioned into four corresponding risk periods (see Figure 20).

Each of these periods has different risk factors and causes of death, and hence, different opportunities for prevention; therefore, the four risk periods represent distinct points of intervention in the health care continuum (see Figure 21).

Texas and specific sub-populations were compared to a state-level reference group generally known to have better feto-infant mortality outcomes (i.e., non-Hispanic White women who are at least 20 years of age and have 13+ years of education). The excess feto-infant mortality rate (F-IMR) is the difference in feto-infant mortality rate between the exposure group (i.e., Black, White, Hispanic, or teens) and the reference group. In 2012, Black mothers experienced a total of 7.4 excess fetal and infant deaths per 1,000 live births and fetal deaths. Total excess F-IMRs for White mothers, Hispanic mothers, and teen mothers were 1.4 per 1,000, 1.3 per 1,000, and 2.9 per 1,000, respectively (see Figure 22).

Black women had the highest excess F-IMR for all four risk periods (see Figure 22), with 59 percent of all Black fetal and infant deaths being potentially preventable. Moreover, 48 percent of the overall excess Black fetal and infant deaths occurred in the Maternal Health/Prematurity risk period, with an excess F-IMR 8.5 times that of Whites during this period. For teens, 86 percent of excess deaths occurred in the Maternal Health and Infant Health risk periods. In the Infant Health risk period, the rate of excess feto-infant mortality among Blacks was 3.9 times that of Whites and 8.8 times that of Hispanics.
For fetal and infant deaths in the Maternal Health/Prematurity risk period, a Kitagawa analysis was conducted for each sub-population, to examine whether excess feto-infant mortality was primarily due to a greater number of very low birth weight (VLBW) infants compared to the reference population (a difference in birth weight distribution), or to a higher mortality rate among VLBW infants than seen in the reference population (a difference in birth weight-specific mortality) [10]. The percentage of excess deaths attributable to a difference in birth weight distribution compared with the percentage attributable to a difference in VLBW mortality rate are shown in Figure 23 for each sub-population.

The majority of excess Maternal Health/Prematurity risk period infant deaths among White, Blacks, Hispanics, and teens were attributable to a greater number of VLBW births in these groups when compared to the reference population. Notably, Black mothers had lower mortality rates among VLBW births than the reference population; for this subgroup, all excess deaths were potentially attributable to a greater number of VLBW births (see Figure 23). This suggests that for all of these sub-populations, and especially for Blacks, interventions aimed at reducing the number of VLBW births are likely to be most effective at closing the gap in feto-infant mortality.

For Whites, Hispanics, and teens, some proportion of excess feto-infant death was also attributable to a higher mortality rate among VLBW births than the reference population. Risk factors associated with birth weight-specific mortality are often related to the quality of medical care provided to the mother and/or infant before, during, and after delivery [10].

In a multivariable analysis of factors associated with VLBW births, the modifiable risk factors that contributed most to VLBW included weight gain less than 15 pounds, inadequate prenatal care, teen pregnancy, and previous preterm birth. About 19 percent of all VLBW births were attributed to weight gain of less 15 pounds. Blacks, Hispanics, and teens were significantly more likely to have these risk factors compared to the reference population.

An additional analysis was conducted to identify factors related to infant death among VLBW births. Factors that contributed the most to risk of infant death were congenital anomalies, ruptured membranes, and respiratory care. Blacks and teens had higher prevalence of premature rupture of membranes and respiratory care than the reference population.
For infant deaths in the Infant Health risk period, perinatal conditions were the primary cause of death, accounting for 43 percent of excess deaths (see Figure 24). Of the subgroups examined, Blacks and teens had the greatest excess infant mortality in the infant health period. SIDS contributed to 11 percent of excess mortality among Blacks, and birth defects accounted for 16 percent of excess infant deaths among teens.

Inadequate prenatal care, smoking, and not breastfeeding at hospital discharge were the risk factors that contributed the most to overall risk of infant death.

In the Maternal Care risk period, among fetal deaths, Black mothers were 1.8 times as likely to gain less than 15 pounds compared to the reference group. Black mothers were also significantly more likely to have hypertension.
INFANT HEALTH PRACTICES

BREASTFEEDING

Breast milk is the best source of nutrition for infants, as it contains essential nutrients and antibodies necessary to best nourish infants and protect them from disease. Formula-fed babies are at higher risk of several adverse outcomes, including necrotizing enterocolitis (a condition that affects the gastrointestinal tract of preterm infants), lower respiratory infections, and chronic diseases such as asthma, obesity, and type 2 diabetes [11]. Exclusive breastfeeding has also been shown to be protective against infant mortality due to SIDS as well as deaths from childhood illnesses [12, 13].

According to the National Immunization Survey, 81.9 percent (CI: 78.8-85.0) of infants born in Texas in 2013 were ever breastfed (see Figure 25) [14]. This rate was very similar to the 2013 national rate (81.1 percent; CI: 80-82.2), and for the second year, Texas met the HP2020 target for proportion of infants having ever breastfed (81.9 percent).

![Figure 25](image-url)

However, significant race/ethnic disparities exist in the rate of women who have ever breastfed their infant. Black mothers report lower rates of ever breastfeeding than either White or Hispanic mothers (see Figure 26).

![Figure 26](image)

Among the Women, Infants, and Children (WIC) population in Texas, 84.8 percent of clients surveyed in the 2013 Infant Feeding Practices Survey reported ever breastfeeding, and in 2016, 86.0 percent reported ever breastfeeding [15].

While a relatively large proportion of Texas mothers report having ever breastfed, rates of exclusive breastfeeding are significantly lower. Research has shown that the benefits of breastfeeding are greatest when the baby is exclusively fed breast milk for the first 6 months after birth. According to the National Immunization Survey, 41.4 percent (C.I.: 37.3-45.2) of Texas mothers reported exclusively breastfeeding at 3 months, and 21.0 percent (C.I.: 17.6-24.4) reported breastfeeding exclusively at 6 months in 2013 [14]. Among mothers enrolled in Texas WIC in 2016, 18.4 percent reported exclusive breastfeeding at 3 months, and only 6.0 percent reported exclusively breastfeeding at 6 months of age [15].

It has been shown that initiating breastfeeding in the hospital is an important first step towards exclusive breastfeeding. In Texas, only 14.8 percent of births in 2013 occurred in a Baby Friendly Hospital, according to the National Immunization Survey [16].
Placing an infant on his/her back to sleep, rather than on the stomach or side, is an important strategy to reduce sleep-related deaths [17]. According to Texas PRAMS data, the percent of mothers reporting placing their infant on their back to sleep has increased by almost 40 percent since 2004. Despite this significant increase, substantial race/ethnic differences still exist. In particular, although the proportion of Black mothers placing their infant on their back to sleep increased by 73 percent between 2004 and 2013, this proportion was still significantly lower among Black mothers than among both White and Hispanic mothers in 2013 (see Figure 27).

Figure 27
Women Who Reported Placing Infant on Back to Sleep by Race/Ethnicity, Texas PRAMS 2004-2013

Error Bars: 95% Confidence Interval
Source: 2004-2013 Texas PRAMS
Prepared by: Office of Program Decision Support
Oct 2016
The HP2020 target is to increase the proportion of pregnant women who begin prenatal care in the first trimester of pregnancy to 77.9 percent. Texas, as a whole, is not meeting this target percentage; in 2015, 65.9 percent of mothers entered prenatal care within the first trimester (see Figure 28).

Timely access to prenatal care increased in Texas from 2009-2011 (largely driven by a sharp increase in the percentage of Hispanic women receiving prenatal care in the first trimester during this timeframe), but appears to have plateaued since 2011. Disparities in timely prenatal care access exist between different race/ethnic groups. A larger proportion of White women begin receiving prenatal care in the first trimester of pregnancy, compared to all other race/ethnic groups. Conversely, a smaller proportion of Black women receive prenatal care in the first trimester than any other race/ethnic group. Only a little more than half of Black mothers begin prenatal care in the first trimester of pregnancy.

Late entry into prenatal care is a statewide problem. In 2014, only one urban Texas county (Williamson County, in central Texas) met the HP2020 target percentage of women entering prenatal care in the first trimester (see Figure 29).
Using PRAMS 2013 survey data, a larger proportion of Black mothers, Hispanic mothers, and mothers of ‘Other’ race/ethnicity reported receiving prenatal care as early as they wanted, compared to the proportion who reported receiving prenatal care in the first trimester (see Figure 30). Furthermore, of those mothers who reported that they did not receive care in the first trimester of their pregnancy, 47.3 percent still reported that they had received prenatal care as early as they had wanted in 2013. These findings indicate a need for increased education and awareness of the importance of obtaining prenatal care starting in the first trimester.

Figure 30
Comparing Percent of Women Receiving Prenatal Care in First Trimester and Early as Wanted by Race/Ethnicity, PRAMS 2013

Note: Prenatal care timing is self-reported in PRAMS and is not comparable to data from the birth file.
Source: 2013 Texas PRAMS
Prepared by: Office of Program Decision Support
Oct 2016
Texas is one of the better performing states when it comes to smoking during pregnancy. This is due, in large part, to the high number of births to Hispanic women in the state (47 percent of all births in Texas were to Hispanic women in 2015).

In general, Hispanic women have a lower prevalence of smoking than women of all other races/ethnicities in Texas. A smaller proportion of both Hispanic women and women of ‘Other’ race/ethnicity smoked three months prior to becoming pregnant, compared to all other race/ethnic groups (see Figure 31).

Women of these race/ethnic groups also have the lowest prevalence of smoking during pregnancy, both in Texas and the nation. Currently, only Hispanic women are meeting the Healthy People 2020 target of at least 98.6 percent abstinence from smoking during pregnancy in Texas. While the overall proportion of women who smoke during pregnancy has decreased 40.6 percent in Texas over the past decade, there is still room for improvement, especially among White women (see Figure 32).
In 2009, 29.7 percent of women who smoked 3 months prior to pregnancy abstained from smoking (did not smoke at all) once becoming pregnant. In 2014, this rate of total abstinence from smoking during pregnancy among previous smokers had risen to 35.9 percent.

Regional differences in the prevalence of smoking during pregnancy exist throughout Texas (see Figure 33). In 2014, counties near the Texas-Mexico border generally had lower rates of smoking during pregnancy, whereas higher rates of smoking during pregnancy were observed in many counties in north and east Texas.
Obesity is a well-known risk factor for developing hypertension, diabetes, and a variety of other medical problems during pregnancy [18, 19, 20]. Obese women are at higher risk for having a preterm birth or experiencing infant death than are non-obese women [21, 22, 23].

Pre-pregnancy obesity is more prevalent among Black and Hispanic mothers than among White mothers or mothers of ‘Other’ race/ethnicity (see Figure 35). However, over the past decade, the rate of pre-pregnancy obesity has risen most steeply among mothers of ‘Other’ race/ethnicity; a 55 percent increase in pre-pregnancy obesity has been observed among mothers of this group since 2006. Hispanic mothers have also seen a relatively large increase in pre-pregnancy obesity between 2006 and 2015 (a 33.2 percent increase among Hispanic mothers, compared with increases of 19 and 20 percent among Black and White mothers, respectively).
Prevalence of pre-pregnancy obesity also differs by maternal age. In 2015, a much lower proportion of mothers younger than 20 years old were obese prior to pregnancy, compared with all older age groups. Mothers 40 years or older had the highest proportion of pre-pregnancy obesity. The rise in obesity rates over time has also differed by maternal age. Over the past decade, a larger increase in the prevalence of pre-pregnancy obesity has been observed for mothers older than 35 years old than for mothers younger than 35 (see Figure 36).

Figure 36
Maternal Pre-pregnancy Obesity by Age Group, 2006-2015

Many rural and suburban counties in Texas have higher pre-pregnancy obesity rates than the state as a whole (see Figure 37). In addition to pre-pregnancy obesity rate differences observed between Texas counties, it is also likely that within-county differences could also exist, since neighborhood environments (walkability, access to parks/sidewalks, access to healthy food choices) can vary widely even within the same county [24, 25].

Figure 37
Percent of Births to an Obese Mother, 2014
According to 2015 birth certificate data, 5.5 percent of all live births were to mothers who had diabetes, and 7.4 percent of all live births were to mothers with some form of hypertension (these mothers either had diabetes or hypertension pre-pregnancy, or developed the condition over the course of the pregnancy). Rates of both hypertension and diabetes among mothers are slowly rising in Texas (see Figure 38 & Figure 39). As with many health outcomes, both hypertension and diabetes rates differ by race/ethnicity. Of all race/ethnic groups, Black and White women have the highest percentages of maternal hypertension, while women in the ‘Other’ race/ethnicity category and Hispanic women have the highest percentages of maternal diabetes (see Figure 38 & Figure 39).

Pre-pregnancy obesity is associated with both diabetes and hypertension in the Texas data, as is seen in the literature [18, 19]. In 2015, 20.7 percent of all mothers with pre-pregnancy obesity also had
hypertension, diabetes, or both conditions. In contrast, only 7.2 percent of mothers with normal pre-pregnancy BMI were hypertensive, diabetic, or had both conditions.

Women with diabetes and their infants are at increased risk for a variety of complications, including infant or fetal death. While a relatively small proportion (fewer than seven percent) of women who deliver each year have some form of hypertension, these women experience a disproportionately high percentage of fetal and infant deaths (about 11 percent of all fetal and infant deaths). Additionally, these women experience a high rate of severe maternal morbidity. Hypertension/eclampsia is both a leading diagnosis of severe maternal morbidity and a leading cause of maternal death for Black women [26].
DELIVERY

The method of delivery for live births in Texas has remained relatively stable from 2006 to 2015 (see Figure 40). Over this time period, the percentage of vaginal births has decreased slightly, and the percent of women having a repeat cesarean section has increased slightly. The percent of infants born via primary cesarean section (cesarean section in a woman who has not previously had a cesarean section) has shown modest decreases since 2009. In 2015, 34.4 percent of all Texas deliveries were delivered by cesarean section.

LOW-RISK CESAREAN DELIVERY RATES

The cesarean section rates mentioned above are overall rates that reflect both medically necessary and elective cesarean deliveries. Whether or not a cesarean section is elective is difficult to assess using the Texas birth file. Criteria that would identify a cesarean delivery as medically necessary are not well documented on the birth certificate, so the distinction between elective and non-elective deliveries cannot be made. However, an analysis of cesarean section rates among only ‘low-risk’ deliveries was conducted. For this analysis, the CDC definition of ‘low-risk delivery’ was used: first-time (nulliparous) singleton deliveries where the fetus is considered a term birth (37 or more weeks gestation) and is in the vertex position (head down).

Approximately 29.3 percent of all low-risk deliveries in Texas occurred via cesarean section in 2015. Overall, the percent of low-risk deliveries by cesarean section in Texas has declined since 2009. Notably, among Hispanic mothers, the cesarean section rate for low-risk deliveries has decreased 10 percent from 2013 to 2015. Consequently, Hispanic mothers with low-risk deliveries currently have a much lower
cesarean section rate than do all other race/ethnic groups (see Figure 41). Black mothers have the highest percentage of low-risk deliveries via cesarean section.

Regional differences in low-risk cesarean delivery rates are also observed in Texas. The majority of counties with high rates of low-risk cesarean deliveries (compared to the state rate) are located in south and southeast Texas (see Figure 42).
Among low-risk deliveries, cesarean section rates also differ by mothers’ weight category (based on pre-pregnancy BMI). Low-risk mothers with pre-pregnancy obesity have a higher cesarean section rate than low-risk mothers of all other pre-pregnancy weight categories (see Figure 43).

![Graph showing cesarean section rates by BMI category for low-risk deliveries from 2006 to 2015.](image)

Figure 43

Low-Risk Cesarean Section Rate by BMI Category, 2006-2015

LABOR INDUCTION RATES IN LOW-RISK MOTHERS

In this subsection, labor induction rates and patterns are examined among low-risk mothers (mothers with low-risk deliveries) only. Again, the CDC definition of ‘low-risk delivery’ was used.

The labor induction rate among low-risk deliveries was 30.4 percent in 2015 (see Figure 44). The percent of low-risk deliveries occurring through induction of labor has decreased for all race/ethnic groups since
2010. Among low-risk deliveries, White mothers have the highest prevalence of labor induction, while Hispanic mothers and mothers of ‘Other’ race/ethnicity have the lowest prevalence (see Figure 44).

Figure 44
Induction Rate Among Low Risk Deliveries by Race/Ethnicity, 2006-2015

Many counties in north and northeast Texas have higher percentages of low-risk deliveries occurring via labor induction than the state rate (see Figure 45).

Figure 45
Percent of Low-Risk Live Births That Were Induced, 2014
Induction rates among low-risk deliveries were also analyzed by gestational age category. In 2015, approximately 47 percent of all late-term births (41 weeks of gestation and later) in Texas were induced, compared with 31 percent of all full-term births (39-40 weeks gestation) and 25 percent of all early term births (37-38 weeks gestation) (see Figure 46). The proportion of low-risk early term deliveries occurring via labor induction has decreased substantially since 2010, likely due, in part, to Medicaid policy changes in October 2011 (Texas House Bill 1983), which denies payment by Medicaid for elective deliveries (either via induction of labor or by cesarean section) that take place prior to 39 weeks gestation [27].

Figure 46

Induction Rate for Low Risk Live Births by Gestational Age Category, 2006-2015

*2015 Texas data are preliminary
Low risk births are nulliparous, singleton, term, vertex births
Source: 2006-2015 Birth Files
Prepared by: Office of Program Decision Support
Oct 2016*
CONCLUSION

This report provides an overview of a variety of infant health indicators, as well as several indicators of maternal health during pregnancy. Over the past decade, Texas has seen a reduction in the infant mortality rate, the preterm birth rate, and the percentage of women who smoke during pregnancy. However, during this same time period, the state has experienced an increase in pre-pregnancy obesity, maternal diabetes, and maternal hypertension.

Substantial race/ethnic disparities exist for infant health indicators, including rates of infant mortality, preterm birth, and low birth weight births. Infants born to Black mothers have significantly higher rates of each of these adverse infant health outcomes than do infants born to mothers of other races/ethnicities. Infant health practices and maternal health indicators also differ by race/ethnicity in Texas. Geographic and regional differences were also observed throughout Texas, especially for infant mortality rates, prevalence of smoking during pregnancy, and the proportion of low-risk deliveries occurring via cesarean section.

It is hoped that the information presented in this report can help public health workers, researchers, and policymakers identify trends and disparities in infant and maternal health outcomes in Texas, so that they are better able to make data-driven decisions on where best to allocate resources and interventions to improve these outcomes.
MORE INFORMATION ON INFANT AND MATERNAL HEALTH IN TEXAS

Report released in 2014 focusing on the rates and costs of gestational diabetes in the Texas Medicaid population. This study shows that the rate of diabetes among pregnant women enrolled in Medicaid is underestimated on the birth certificate and provides a clearer estimate of the impact of gestational diabetes on this population.

http://www.dshs.texas.gov/chs/datalist.shtm

Contains vital statistics tables and reports providing basic health-related data at the state and county level.

http://healthdata.dshs.texas.gov/Home

This online query tool from DSHS allows you to create tables of basic birth statistics at the state or county level. The tool can be used to compare race/ethnicities, education level, marital status, and a variety of other demographics across major birth outcome indicators.

www.dshs.state.tx.us/mch/

Contains the PRAMS annual reports as well as links to other information about maternal and child health and community-based initiatives.

www.marchofdimes.com/peristats/Peristats.aspx

Online query tool from the March of Dimes that covers a variety of infant health indicators that can be compared across different states in the country or across years for single regions/states.

www.SomedayStartsNow.com

Website containing information for men and women of childbearing age, parents, providers and community stakeholders. There are toolkits for outreach, life and birth planning tools, social media tools and a page devoted to the Texas Collaborative for Healthy Mothers and Babies.

For information on maternal mortality and morbidity in Texas, please see:

- Scientific Analysis of the Current State and Needs of the Maternal and Child Population in Texas (http://www.dshs.texas.gov/opds/OPDS-Reports.aspx);
- The Maternal Mortality Rate (MMR) in Texas as computed by the DSHS Center for Health Statistics (https://www.dshs.texas.gov/chs/vstat/vs14/t05.aspx); and

[26] Texas Department of State Health Services, "Maternal Mortality and Morbidity Task Force and Department of State Health Services Joint Biennial Report," Texas Department of State Health Services, Austin, 2016.

Figure 5. Teen (15-19 year old) Birth Rate by Race/Ethnicity

<table>
<thead>
<tr>
<th>Year</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>32.5</td>
<td>63.8</td>
<td>90.9</td>
<td>19.9</td>
<td>60.2</td>
</tr>
<tr>
<td>2007</td>
<td>32.8</td>
<td>62.9</td>
<td>90.5</td>
<td>18.8</td>
<td>60.6</td>
</tr>
<tr>
<td>2008</td>
<td>32.8</td>
<td>61.2</td>
<td>87.9</td>
<td>17.2</td>
<td>59.7</td>
</tr>
<tr>
<td>2009</td>
<td>32.0</td>
<td>57.9</td>
<td>83.3</td>
<td>15.1</td>
<td>57.4</td>
</tr>
<tr>
<td>2010</td>
<td>30.7</td>
<td>56.0</td>
<td>73.8</td>
<td>9.6</td>
<td>52.2</td>
</tr>
<tr>
<td>2011</td>
<td>26.9</td>
<td>48.9</td>
<td>64.7</td>
<td>8.5</td>
<td>45.9</td>
</tr>
<tr>
<td>2012</td>
<td>24.4</td>
<td>43.0</td>
<td>59.9</td>
<td>14.9</td>
<td>42.3</td>
</tr>
<tr>
<td>2013</td>
<td>23.9</td>
<td>39.9</td>
<td>54.3</td>
<td>15.0</td>
<td>39.7</td>
</tr>
<tr>
<td>2014</td>
<td>21.8</td>
<td>36.9</td>
<td>49.4</td>
<td>13.4</td>
<td>36.3</td>
</tr>
<tr>
<td>2015*</td>
<td>20.4</td>
<td>33.2</td>
<td>44.1</td>
<td>12.0</td>
<td>33.0</td>
</tr>
</tbody>
</table>

Rate per 1,000 in the population
2006-2015 Texas Birth files; 2015 data are preliminary

Figure 8. Infant Mortality Rate in Texas by Race/Ethnicity

<table>
<thead>
<tr>
<th>Year</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>5.4</td>
<td>12.3</td>
<td>5.4</td>
<td>5.5</td>
<td>6.2</td>
</tr>
<tr>
<td>2007</td>
<td>5.4</td>
<td>11.8</td>
<td>5.5</td>
<td>6.4</td>
<td>6.2</td>
</tr>
<tr>
<td>2008</td>
<td>5.9</td>
<td>9.9</td>
<td>5.4</td>
<td>6.7</td>
<td>6.1</td>
</tr>
<tr>
<td>2009</td>
<td>5.1</td>
<td>11.3</td>
<td>5.2</td>
<td>6.9</td>
<td>6.0</td>
</tr>
<tr>
<td>2010</td>
<td>5.5</td>
<td>11.4</td>
<td>5.5</td>
<td>3.8</td>
<td>6.1</td>
</tr>
<tr>
<td>2011</td>
<td>4.8</td>
<td>11.0</td>
<td>5.2</td>
<td>3.7</td>
<td>5.7</td>
</tr>
<tr>
<td>2012</td>
<td>5.3</td>
<td>11.6</td>
<td>5.2</td>
<td>3.4</td>
<td>5.8</td>
</tr>
<tr>
<td>2013</td>
<td>5.0</td>
<td>11.9</td>
<td>5.2</td>
<td>4.0</td>
<td>5.8</td>
</tr>
<tr>
<td>2014</td>
<td>4.9</td>
<td>11.1</td>
<td>5.4</td>
<td>4.2</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Rate per 1,000 live births
2006-2014 Texas Birth and Death files

Figure 15. Percent of Live Births Born Preterm (less than 37 Weeks) by Race/Ethnicity

<table>
<thead>
<tr>
<th>Year</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>11.0</td>
<td>15.8</td>
<td>10.6</td>
<td>10.3</td>
<td>11.3</td>
</tr>
<tr>
<td>2007</td>
<td>11.0</td>
<td>15.7</td>
<td>10.6</td>
<td>9.8</td>
<td>11.3</td>
</tr>
<tr>
<td>2008</td>
<td>10.9</td>
<td>15.1</td>
<td>10.6</td>
<td>10.3</td>
<td>11.2</td>
</tr>
<tr>
<td>2009</td>
<td>10.8</td>
<td>15.4</td>
<td>10.4</td>
<td>9.6</td>
<td>11.1</td>
</tr>
<tr>
<td>2010</td>
<td>10.2</td>
<td>14.8</td>
<td>10.5</td>
<td>10.2</td>
<td>10.9</td>
</tr>
<tr>
<td>2011</td>
<td>10.1</td>
<td>14.3</td>
<td>10.4</td>
<td>9.9</td>
<td>10.7</td>
</tr>
<tr>
<td>2012</td>
<td>10.0</td>
<td>14.5</td>
<td>10.1</td>
<td>9.6</td>
<td>10.5</td>
</tr>
<tr>
<td>2013</td>
<td>9.7</td>
<td>13.9</td>
<td>10.1</td>
<td>10.3</td>
<td>10.4</td>
</tr>
<tr>
<td>2014</td>
<td>9.7</td>
<td>14.0</td>
<td>10.1</td>
<td>9.6</td>
<td>10.3</td>
</tr>
<tr>
<td>2015*</td>
<td>9.6</td>
<td>13.6</td>
<td>9.8</td>
<td>9.3</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Computed using the obstetric estimate of gestation
2006-2015 Texas Birth and Death files; 2015 data are preliminary
Figure 18. Percent of Births that are Low Birth Weight by Race/Ethnicity

<table>
<thead>
<tr>
<th>Year</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>7.6</td>
<td>14.2</td>
<td>7.7</td>
<td>8.9</td>
<td>8.5</td>
</tr>
<tr>
<td>2007</td>
<td>7.6</td>
<td>14.4</td>
<td>7.5</td>
<td>8.8</td>
<td>8.4</td>
</tr>
<tr>
<td>2008</td>
<td>7.7</td>
<td>14.0</td>
<td>7.7</td>
<td>9.1</td>
<td>8.4</td>
</tr>
<tr>
<td>2009</td>
<td>7.8</td>
<td>14.2</td>
<td>7.6</td>
<td>9.0</td>
<td>8.5</td>
</tr>
<tr>
<td>2010</td>
<td>7.5</td>
<td>13.9</td>
<td>7.7</td>
<td>9.5</td>
<td>8.4</td>
</tr>
<tr>
<td>2011</td>
<td>7.6</td>
<td>13.6</td>
<td>7.8</td>
<td>9.5</td>
<td>8.5</td>
</tr>
<tr>
<td>2012</td>
<td>7.3</td>
<td>13.9</td>
<td>7.5</td>
<td>9.1</td>
<td>8.3</td>
</tr>
<tr>
<td>2013</td>
<td>7.3</td>
<td>13.2</td>
<td>7.7</td>
<td>9.7</td>
<td>8.3</td>
</tr>
<tr>
<td>2014</td>
<td>7.2</td>
<td>13.4</td>
<td>7.5</td>
<td>9.1</td>
<td>8.2</td>
</tr>
<tr>
<td>2015*</td>
<td>7.1</td>
<td>13.3</td>
<td>7.7</td>
<td>9.1</td>
<td>8.3</td>
</tr>
</tbody>
</table>

2006-2015 Texas Birth and Death files; 2015 data are preliminary

Figure 28. Percent of Live Births Where Mother Received Prenatal Care in the First Trimester

<table>
<thead>
<tr>
<th>Year</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>74.9</td>
<td>55.8</td>
<td>57.6</td>
<td>72.2</td>
<td>64.0</td>
</tr>
<tr>
<td>2007</td>
<td>73.2</td>
<td>53.9</td>
<td>55.0</td>
<td>71.0</td>
<td>61.8</td>
</tr>
<tr>
<td>2008</td>
<td>73.0</td>
<td>53.6</td>
<td>54.4</td>
<td>70.6</td>
<td>61.5</td>
</tr>
<tr>
<td>2009</td>
<td>72.7</td>
<td>53.1</td>
<td>54.6</td>
<td>69.1</td>
<td>61.4</td>
</tr>
<tr>
<td>2010</td>
<td>73.5</td>
<td>54.2</td>
<td>58.6</td>
<td>69.9</td>
<td>63.9</td>
</tr>
<tr>
<td>2011</td>
<td>75.0</td>
<td>57.0</td>
<td>61.6</td>
<td>69.8</td>
<td>66.3</td>
</tr>
<tr>
<td>2012</td>
<td>75.2</td>
<td>55.6</td>
<td>61.6</td>
<td>68.7</td>
<td>66.2</td>
</tr>
<tr>
<td>2013</td>
<td>75.0</td>
<td>56.1</td>
<td>61.5</td>
<td>67.9</td>
<td>66.1</td>
</tr>
<tr>
<td>2014</td>
<td>74.2</td>
<td>56.0</td>
<td>60.2</td>
<td>67.2</td>
<td>65.2</td>
</tr>
<tr>
<td>2015*</td>
<td>75.2</td>
<td>56.6</td>
<td>61.1</td>
<td>67.0</td>
<td>65.9</td>
</tr>
</tbody>
</table>

Computed using the obstetric estimate of gestation
2006-2015 Texas Birth files; 2015 data are preliminary

Figure 32. Percent of Live Births Where the Mothers Smoked During Pregnancy

<table>
<thead>
<tr>
<th>Year</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>12.8</td>
<td>5.9</td>
<td>1.7</td>
<td>2.3</td>
<td>6.0</td>
</tr>
<tr>
<td>2007</td>
<td>12.1</td>
<td>5.8</td>
<td>1.5</td>
<td>1.7</td>
<td>5.6</td>
</tr>
<tr>
<td>2008</td>
<td>11.5</td>
<td>5.4</td>
<td>1.5</td>
<td>1.8</td>
<td>5.4</td>
</tr>
<tr>
<td>2009</td>
<td>11.0</td>
<td>5.4</td>
<td>1.3</td>
<td>1.5</td>
<td>5.1</td>
</tr>
<tr>
<td>2010</td>
<td>10.3</td>
<td>5.1</td>
<td>1.3</td>
<td>1.6</td>
<td>4.9</td>
</tr>
<tr>
<td>2011</td>
<td>9.8</td>
<td>4.7</td>
<td>1.2</td>
<td>1.5</td>
<td>4.6</td>
</tr>
<tr>
<td>2012</td>
<td>9.2</td>
<td>4.7</td>
<td>1.2</td>
<td>2.1</td>
<td>4.4</td>
</tr>
<tr>
<td>2013</td>
<td>9.1</td>
<td>4.4</td>
<td>1.2</td>
<td>2.0</td>
<td>4.3</td>
</tr>
<tr>
<td>2014</td>
<td>8.1</td>
<td>4.1</td>
<td>1.1</td>
<td>1.9</td>
<td>3.9</td>
</tr>
<tr>
<td>2015*</td>
<td>7.6</td>
<td>3.6</td>
<td>1.0</td>
<td>1.6</td>
<td>3.6</td>
</tr>
</tbody>
</table>

2006-2015 Texas Birth files; 2015 data are preliminary
Figure 38. Maternal Hypertension by Race/Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>6.3</td>
<td>7.8</td>
<td>4.9</td>
<td>3.7</td>
<td>5.7</td>
</tr>
<tr>
<td>2007</td>
<td>6.2</td>
<td>7.6</td>
<td>4.5</td>
<td>3.7</td>
<td>5.4</td>
</tr>
<tr>
<td>2008</td>
<td>6.1</td>
<td>7.8</td>
<td>4.7</td>
<td>3.6</td>
<td>5.5</td>
</tr>
<tr>
<td>2009</td>
<td>6.4</td>
<td>8.4</td>
<td>4.8</td>
<td>3.8</td>
<td>5.7</td>
</tr>
<tr>
<td>2010</td>
<td>6.9</td>
<td>8.9</td>
<td>5.4</td>
<td>4.4</td>
<td>6.3</td>
</tr>
<tr>
<td>2011</td>
<td>7.0</td>
<td>9.0</td>
<td>5.4</td>
<td>4.3</td>
<td>6.3</td>
</tr>
<tr>
<td>2012</td>
<td>6.9</td>
<td>8.9</td>
<td>5.6</td>
<td>4.4</td>
<td>6.4</td>
</tr>
<tr>
<td>2013</td>
<td>7.0</td>
<td>9.0</td>
<td>5.7</td>
<td>4.6</td>
<td>6.4</td>
</tr>
<tr>
<td>2014</td>
<td>7.7</td>
<td>9.3</td>
<td>6.1</td>
<td>4.8</td>
<td>6.9</td>
</tr>
<tr>
<td>2015*</td>
<td>8.4</td>
<td>10.1</td>
<td>6.3</td>
<td>5.1</td>
<td>7.4</td>
</tr>
</tbody>
</table>

2006-2015 Texas Birth files; 2015 data are preliminary

Figure 39. Maternal Diabetes by Race/Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>3.8</td>
<td>3.9</td>
<td>4.6</td>
<td>7.5</td>
<td>4.3</td>
</tr>
<tr>
<td>2007</td>
<td>3.8</td>
<td>3.7</td>
<td>5.0</td>
<td>7.7</td>
<td>4.6</td>
</tr>
<tr>
<td>2008</td>
<td>3.8</td>
<td>3.7</td>
<td>5.1</td>
<td>7.2</td>
<td>4.6</td>
</tr>
<tr>
<td>2009</td>
<td>3.4</td>
<td>3.6</td>
<td>5.1</td>
<td>7.3</td>
<td>4.4</td>
</tr>
<tr>
<td>2010</td>
<td>3.6</td>
<td>3.7</td>
<td>5.1</td>
<td>7.5</td>
<td>4.5</td>
</tr>
<tr>
<td>2011</td>
<td>3.7</td>
<td>4.2</td>
<td>5.7</td>
<td>7.7</td>
<td>4.9</td>
</tr>
<tr>
<td>2012</td>
<td>3.9</td>
<td>4.2</td>
<td>5.8</td>
<td>7.3</td>
<td>5.0</td>
</tr>
<tr>
<td>2013</td>
<td>3.8</td>
<td>4.0</td>
<td>5.7</td>
<td>7.2</td>
<td>4.9</td>
</tr>
<tr>
<td>2014</td>
<td>4.3</td>
<td>4.6</td>
<td>6.3</td>
<td>8.2</td>
<td>5.5</td>
</tr>
<tr>
<td>2015*</td>
<td>4.4</td>
<td>4.6</td>
<td>6.1</td>
<td>8.2</td>
<td>5.5</td>
</tr>
</tbody>
</table>

2006-2015 Texas Birth files; 2015 data are preliminary

Figure 41. Primary Cesarean Deliveries among Low Risk Live Births by Race/Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>31.7</td>
<td>32.5</td>
<td>29.1</td>
<td>32.5</td>
<td>30.7</td>
</tr>
<tr>
<td>2007</td>
<td>32.1</td>
<td>33.2</td>
<td>29.3</td>
<td>31.8</td>
<td>30.9</td>
</tr>
<tr>
<td>2008</td>
<td>32.4</td>
<td>34.1</td>
<td>29.9</td>
<td>32.6</td>
<td>31.5</td>
</tr>
<tr>
<td>2009</td>
<td>32.7</td>
<td>34.0</td>
<td>30.5</td>
<td>34.6</td>
<td>31.9</td>
</tr>
<tr>
<td>2010</td>
<td>31.6</td>
<td>33.6</td>
<td>30.8</td>
<td>32.6</td>
<td>31.5</td>
</tr>
<tr>
<td>2011</td>
<td>30.9</td>
<td>32.9</td>
<td>30.7</td>
<td>31.4</td>
<td>31.1</td>
</tr>
<tr>
<td>2012</td>
<td>31.1</td>
<td>34.1</td>
<td>30.6</td>
<td>32.7</td>
<td>31.3</td>
</tr>
<tr>
<td>2013</td>
<td>30.4</td>
<td>34.3</td>
<td>30.7</td>
<td>31.9</td>
<td>31.1</td>
</tr>
<tr>
<td>2014</td>
<td>30.0</td>
<td>33.5</td>
<td>29.2</td>
<td>31.6</td>
<td>30.2</td>
</tr>
<tr>
<td>2015*</td>
<td>29.8</td>
<td>33.3</td>
<td>27.4</td>
<td>31.5</td>
<td>29.3</td>
</tr>
</tbody>
</table>

Low risk births are nulliparous, singleton, term, vertex births.
2006-2015 Texas Birth files; 2015 data are preliminary
Figure 44. Labor Induction Rate among Low Risk Live Births by Race/Ethnicity

<table>
<thead>
<tr>
<th>Year</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>37.7</td>
<td>30.4</td>
<td>28.1</td>
<td>28.1</td>
<td>32.1</td>
</tr>
<tr>
<td>2007</td>
<td>38.5</td>
<td>31.5</td>
<td>29.1</td>
<td>27.9</td>
<td>32.9</td>
</tr>
<tr>
<td>2008</td>
<td>38.5</td>
<td>30.3</td>
<td>30.6</td>
<td>27.3</td>
<td>33.4</td>
</tr>
<tr>
<td>2009</td>
<td>39.2</td>
<td>33.1</td>
<td>30.2</td>
<td>28.2</td>
<td>33.8</td>
</tr>
<tr>
<td>2010</td>
<td>39.2</td>
<td>33.5</td>
<td>30.2</td>
<td>29.3</td>
<td>34.0</td>
</tr>
<tr>
<td>2011</td>
<td>38.7</td>
<td>32.0</td>
<td>29.9</td>
<td>28.2</td>
<td>33.4</td>
</tr>
<tr>
<td>2012</td>
<td>37.6</td>
<td>32.5</td>
<td>28.9</td>
<td>28.6</td>
<td>32.6</td>
</tr>
<tr>
<td>2013</td>
<td>36.9</td>
<td>32.1</td>
<td>28.4</td>
<td>27.3</td>
<td>32.0</td>
</tr>
<tr>
<td>2014</td>
<td>35.7</td>
<td>30.1</td>
<td>27.3</td>
<td>26.1</td>
<td>30.6</td>
</tr>
<tr>
<td>2015*</td>
<td>36.0</td>
<td>28.7</td>
<td>26.9</td>
<td>26.8</td>
<td>30.4</td>
</tr>
</tbody>
</table>

Low risk births are nulliparous, singleton, term, vertex births.

2006-2015 Texas Birth files; 2015 data are preliminary