Preventing Surgical Site Infection Related to Devices Used in Surgery

CYNTHIA SPRY, MA, MS, RN, CNOR(E), CSPDT
Disclosure

oneSource
3M
Aesculap
Pfiedler
Boston Scientific
Stryker
Zimmer
Objectives

1. Discuss quality processes in sterile processing
2. Identify common breeches and key aspects of flexible endoscope reprocessing
Objective

Discuss quality processes in sterile processing
Healthcare facilities (e.g., hospitals, ambulatory surgical centers, clinics, and doctors’ offices) that utilize reusable medical devices are urged to immediately review current reprocessing practices at their facility to ensure they (1) are complying with all steps as directed by the device manufacturers, and (2) have in place appropriate policies and procedures that are consistent with current standards and guidelines.

http://www.emergency.cdc.gov/han/han00382.asp
It’s a New Day – Sterile Processing

Instruments increasingly complex
 ◦ Longer and more narrow lumens
 ◦ Variety of materials
 ◦ Expensive – need for rapid turn around

Instructions for use/maintenance (IFU) are problematic

Expanding knowledge base

Intense focus from JCAHO, etc.

Need for critical thinking skills
It’s a New Day

Few credentialing requirements for SPD personnel

Growth in related guidance/standard/regulatory documents

More than ever there is a need for IPs and SPD personnel to collaborate

◦ There is a mutual need to understand processes and roles
The Instruments

Hard to trace an instrument to an infection yet SPD is often the first place that is investigated when there is a SSI of unknown origin.

Beginning to gather data tying faulty instrument processing to surgical site infection
 ◦ Think endoscopes

Beginning to gather data tying faulty instrument design to inadequate processing
The Instruments
The Instruments
The Instruments
Step 1 - Guidelines /Resources

Gather resources

Familiarize staff with professional guidelines

ANSI/AAMI ST79 Comprehensive Guide to Steam Sterilization and Sterility Assurance 2013

ANSI/AAMI ST 91 Flexible and Semi-rigid endoscope processing in Health Care Facilities 2015

AORN – Guidelines and tools for Sterile Processing Personnel 2014

AORN – Guideline for Processing Flexible Endoscopes 2016
Instructions For Use (IFU)

Absent – do not exist

Vague

Lack of standardization (water temp, time, methods etc.)

Hard to obtain

Updates – When? How notified? Dated?

Not comprehensive
Instructions for Use

IFUs must be readily available
Staff must be very familiar with accessing
Need to be up to date
Need to cover wide range of instruments
Must have IFU for washer and other cleaning equipment, sterilizers, packaging, device, monitoring devices (chemical indicators, biological indicators, etc.)
Step 2 - Cleaning at Point of Use

The most critical step in instrument processing is cleaning

- CLEANING BEGINS AT POINT OF USE
- Many devices difficult to clean
- Delay in cleaning can compromise the sterilization process
- Cleaning can take a long time!

AAMI ST79 sec. 6.3
Tag or otherwise identify damaged instruments
How 1 becomes more than 2 million

One survivor 1
20 minutes 2
40 minutes 4
1 hour 8
2 hours 64
3 hours 512
4 hours 4,096
5 hours 32,768
6 hours 262,144
7 hours 2,097,152!!
Step 2 - Transport

Contaminated instruments transported in leak-proof container, colored or labeled with biohazard symbol

OSHA CFR 29 1910.1030
Biofilms

Staphylococcus aureus on a catheter
Biofilms and Surgery

Many SSIs the result of biofilms

Biofilms love moist lumens

Biofilms love implants – not just joints
 ◦ Tissues surrounding implants have reduced blood vessels so less antibiotic delivered to site and fewer macrophages delivered

Infection from biofilm serious – may require 1,000 times dose of antibiotic – encourage resistance
Step 3 - Cleaning

Dedicated decontamination area
- Decontamination area separate from clean area
- Pass through window
- Ambulatory – partition 4 feet high, width of the counter, 4 feet separation

Standard processes
Workflow always dirty to clean
Three sinks ideal

AORN Guidelines for Environment of Care Part II In: Guidelines for Perioperative Practice – 2016
AAMI ST 79, Sec.3.3.7.1
Evaluation of disinfection and sterilization of reusable angioscopes with the duck hepatitis B model

X. Chaufour, MD; K. Vickery, PhD; Sydney, Australia; J Vasc Surg 1999; 30: 277–282.

Contamination N = 231

Improper cleaning
Flushing of angioscope with 5ml of sterile water N=105

Proper Cleaning
Submerging in clean tap water, brushing and flushing. Submerging in Enzymatic detergent and flushing with detergent mix. Brushing and soaking (10 min) before flushing and rinsing with tap water N = 88

Disinfection 2% Glutarald.
5 min 10min 20min EO

Surgery in 1 day old ducklings
Evaluation of disinfection and sterilization of reusable angioscopes with the duck hepatitis B model

X. Chaufour, MD; K. Vickery, PhD; Sydney, Australia; J Vasc Surg 1999; 30: 277–282

Microbiological Results

Improper cleaning

Disinfection 2% Glutarald.
5 min 10min 20min
EO

Proper cleaning

Disinfection 2% Glutarald.
5 min 10min 20min
EO

Control

Flushed

Improper cleaning

Disinfection 2% Glutarald.
5 min 10min 20min
EO

Proper cleaning

Disinfection 2% Glutarald.
5 min 10min 20min
EO
The Detergent
Mechanical Cleaning

Ultrasonic – test daily

Washer/disinfector tested weekly (preferably daily) – documented or recorded

Routine maintenance and preventive maintenance – documented

AAMI ST79, Sec. 7.5.5
Loading the Washer

Load to ensure contact
Not jammed together
Instruments opened
No closed containers
Filter plates removed
What’s wrong with this picture?

- Washer-tunnel drain screen not cleaned
- Clean daily
What’s wrong with this picture?

- Poor loading technique-need to disassemble reusable rigid containers (remove disposable filter retention plates) so all surfaces are exposed to the cleaning process
What’s wrong with this picture?

- Poor loading technique—Instruments cannot be cleaned in a covered rigid container because the instrument surfaces will not come in contact with the detergent or rinse water.
What’s wrong with this picture?

- Poor loading technique - mats should not be placed in the bottom of the trays as it prevents proper spray coverage of instruments.
- Rigid containers are covered.
- Poor loading technique - instruments are piled on top of each other.
Washer Efficacy Tests

Courtesy Healthmark

Check with manufacturer for placement

Courtesy Steris Amsco

Courtesy SteriTec
Step 4 – Inspection
Cleaning – Monitoring, Verifying

Doing nothing is not an option
- Monitoring equipment
- Monitoring cleanliness

Ongoing Safety Review of Arthroscopic Shavers: FDA Safety Communication
Step 5 - Monitoring Cleaning

The standard for clean is “does it look clean?”

Depends upon what is visible, available light, visual acuity of the person inspecting, available magnification

It is possible to monitor efficacy of mechanical cleaning equipment

It is possible to monitor effectiveness of cleaning

PERIODICALLY PERFORM CLEANING VERIFICATION TEST

AAMI ST 79 sec. 7.5.5
Cleaning – ATP Testing

ATP in all living organisms
Swab surface
Measure ATP in a luminator
Bioluminescence measured in RLU (Relative Light Units)
Benchmark RLU levels
Define clean
Track progress
ATP Testing

Courtesy Ruhof

 Courtesy 3M
Cleaning – Key Points

- Always disassemble
- Clean as soon after use as possible
 - Don’t forget the container
- Do not allow debris to dry
- Use an enzyme spray if there will be a delay before cleaning
 - Follow IFU
 - Contact time may be limited
- Resources
- Cleaning verification test

- IFU
- Use ultrasonic
- Monitor washer performance
- Daily maintenance - document
- Check dosing tanks
Does It Work?

Do you have a maintenance program for instruments? Based on volume not on time?
Step 6 - Packaging

Package to ensure contact

Check containers – should be on preventive maintenance schedule as well
 ◦ The older the container the greater the risk of loss of integrity

Clean after each use (a wipe is insufficient)

Pouch – not in set unless manufacturer validated

Single or double – according to IFU

New Study Provides Additional Insight Into Efficacy of Sterile Packaging Systems
November 29, 2015
0 Comments
Posted in News, Disinfection & Sterilization, Products & Services
Step 7 - Monitoring

Monitoring tools

◦ Physical
◦ Chemical
◦ Biological
Physical Monitors

Printouts

Graphs

Digital readouts

Gauges
Chemical Indicator - Type 1

Process indicator for use with individual items
 ◦ Indicates the item as been exposed
 ◦ Tape, sticker, indicator

What can go wrong?

- when processed indicator changes from white to black
Chemical Monitor Type 2

Bowie-Dick
- Tests whether the air is removed and that steam penetrates
- Tests for air leaks
- Tests for presence of non-condensable gasses
- Used in dynamic air removal sterilizers
Chemical Indicators Type 5

Type 5 integrating indicator
- Internal indicator
- Designed to react to all critical variables

Courtesy 3M

Courtesy SPS Medical
Type 6
Internal CI - Placement

Challenging location(s)

Check container manufacturer/IFU for placement

Multi-layers - one on each layer
Biological Indicators/Monitors

Microorganism specific to the technology

BI specific to the cycle type

- Geobacillus stearothermophilus
 - Steam
 - Hydrogen Peroxide Gas Plasma
 - Peracetic acid
 - Ozone
- Bacillus atropheus
 - ETO

 Traditional or early readout – both are BIs
Biological Monitors

Traditional – incubate 24 hrs
Rapid Read – 1 hour and 3 hour
Super Rapid Read Out
 ◦ 1 hour Dynamic air removal
 ◦ ½ hour Gravity

Must select BI to match the type of cycle. Do not use gravity just because the biological read-out is faster
Biological Monitors

Right BI for cycle

Test every type of cycle
 ◦ If same temp then test only shortest exposure

Store BIs according to IFU (Do you need a humidity and temp controlled cabinet?)

Positive control each day sterilizer used in each incubator
Quality Monitoring

Four levels of testing

- Routine load release – every load
- Sterilizer efficacy – periodically
- Qualification testing – after events cause sterilizer to malfunction, installation, relocation, malfunction
- Product testing
Quality Monitoring - *Load Release*

No implant – monitoring optional
- Monitor with
 - BI only in PCD
 - CI only – Type 5 or Type 6 in PCD
 - BI and CI (Type 5) in PCD

Implant – not optional
- Monitor with
 - BI and Type 5 in PCD (May also use Type 6 if desired)
Quality Monitoring - Sterilizer *Efficacy* Testing

When? With what?

- Weekly
- Daily or every day that it is used (preferably every load)
- Full load – PCD with BI – can contain Type 5 CI as well
- For IUSS – empty chamber – monitoring depends upon cycle

Bowie-Dick – run after shortened cycle
Qualification Testing
Installation, Relocation, Malfunctions

Major malfunction includes utilities
- Water main break, air conditioning repair
- Incomplete air removal, inadequate temp or time

IUSS and 2 cu or larger – empty chamber with PCD with BI (may contain CI) X 3

Table top – fully loaded X 3

Bowie-Dick test run after BI cycles – need to establish that sterilizer can kill
Quality Monitoring - *Product Testing*
Sterilizer and Cycle

Autoclave – steam sterilizer

Types of sterilizers and cycles
- Runs only gravity cycles
- Runs gravity and dynamic air removal cycles

Dynamic air removal cycles are preferred

Table top sterilizers usually run only gravity cycles
Step 8 - Storage

Clean, dry, away from traffic
8 to 10 inches above the floor
2 inches from walls
18 inches below sprinkler
4 air exchanges an hour
Solid bottom storage cart
<75 degrees

<79% humidity
Controlled access
Commercially prepared items reviewed and stored accordingly
No external or corrugated boxes
Policy for cleaning storage bins
Objective

Identify common breeches and key aspects of flexible endoscope reprocessing
Overview

Many instances of patient recall, patient infection and and several deaths

- CRE – 50% mortality

Joint Commission focus

FDA/CDC focus

Mainstream media focus

Lapses by processing technicians

Impossible to process design

- Chances that patient ready scope is contaminated is high
- Recent study suggests 50% of the time scope is contaminated
Cleaning Verification

Visual inspection is inadequate to access contamination of cleaned endoscopes

One study of colonoscopies showed that contamination persisted after:
- Manual cleaning (12 of 13)
- High-level disinfection (8 of 11)
- Storage (9 of 11)

Cleaning verification testing is no longer an option

Endoscopes - Duodenoscope

Supplemental Measures to Enhance Duodenoscope Reprocessing: FDA Safety Communication – August 2015

- Microbiological Culturing
- Ethylene Oxide Sterilization (Pentax 2016 – removed from IFU)
- Use of a Liquid Chemical Sterilant Processing System
- Repeat High-Level Disinfection
Deficiencies Noted - Scopes

No point of use cleaning
Delay in processing
Missing 1 hour window
Missing IFU
No QA of test strips
Incomplete log
No competency for each model
 ◦ No annual review
Vendor – brings in and used
Detergent dilution not accurate
HLD not labeled
New equipment with no new training
No alcohol rinse
No date tag
HLD temp not monitored or documented
Scope cabinet not routinely cleaned – no policy or documentation
Scopes touching other scopes and cabinet walls
Handled without gloves

Key Takeaways

Competency for every scope model and company
Cleaning verification test
Certification for processing technicians
Resources – Flexible Scopes

Key Takeaways
- Track scope and accessories to patient on whom used
- Scopes and port buttons processed as a unit
- Do risk assessment for making hang time policy
- Record times from end of procedure to start of clean
- Don’t let scopes touch each other or closet

AAMI ST91 Flexible and Semi-Rigid Endoscope Processing in Health Care Facilities 3/15
AORN Guidelines for Processing Flexible Endoscopes 11/15