NOTE: the treatment algorithms are updated routinely. The most recent versions will appear online. Please be sure to use the most recent version by accessing the Texas Diabetes Council Web site at www.texasdiabetescouncil.org

<table>
<thead>
<tr>
<th>A1c Goals</th>
<th>Texas Diabetes Council A1c Goals — APPROVED: 10/29/09</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diabetes Minimum Practice Recommendations – REVISED: 10/29/09</td>
</tr>
<tr>
<td>Prevention</td>
<td>Prevention and Delay of Type 2 Diabetes in Children and Adults with Impaired Fasting Glucose (IFG) and/or Impaired Glucose Tolerance (IGT) — REVISED: 01/27/05</td>
</tr>
<tr>
<td>Weight Loss</td>
<td>Weight Loss Algorithm for Overweight and Obese Adults — REVISED: 01/27/05</td>
</tr>
<tr>
<td></td>
<td>Weight Management Algorithm for Overweight Children and Adolescents — APPROVED: 04/28/05</td>
</tr>
<tr>
<td>Exercise</td>
<td>Exercise Algorithm Type 2 Diabetes Prevention and Therapy — REVISED: 01/22/04</td>
</tr>
<tr>
<td>Nutrition</td>
<td>Diabetes Medical Nutrition Therapy and Prevention Algorithm for Adults — REVISED: 07/22/10</td>
</tr>
<tr>
<td></td>
<td>Nutrition Recommendations and Interventions for Diabetes (supplement) — APPROVED: 10/29/09</td>
</tr>
<tr>
<td>Glycemic Control</td>
<td>Glycemic Control Algorithm for Type 2 Diabetes Mellitus in Adults — REVISED: 07/22/10</td>
</tr>
<tr>
<td>Cardiovascular Risk Reduction</td>
<td>Hypertension Algorithm for Diabetes in Adults — REVISED: 01/26/06</td>
</tr>
<tr>
<td></td>
<td>Lipid Algorithm for Type 1 and Type 2 Diabetes Mellitus in Adults — REVISED: 01/24/08</td>
</tr>
<tr>
<td></td>
<td>Macrovascular Risk Reduction in Diabetes: Antiplatelet Therapy (supplement) — PUBLICATION DATE: 2004</td>
</tr>
<tr>
<td>Insulin Administration</td>
<td>Insulin Algorithm for Type 1 Diabetes Mellitus in Children and Adults — REVISED: 01/27/10</td>
</tr>
<tr>
<td></td>
<td>Insulin Algorithm for Type 2 Diabetes Mellitus in Children and Adults — REVISED: 10/28/10</td>
</tr>
<tr>
<td></td>
<td>Initiation of Once Daily Insulin Therapy for Type 2 Diabetes Mellitus in Children and Adults — REVISED: 10/28/10</td>
</tr>
<tr>
<td></td>
<td>Worksheet: Advancing to Intensive/Physiologic Basal: Bolus Insulin Therapy — REVISED 01/27/10</td>
</tr>
<tr>
<td></td>
<td>IV Insulin Infusion Protocol for Critically-Ill Adult Patients in the ICU Setting — REVISED: 10/25/07</td>
</tr>
<tr>
<td></td>
<td>ICU Insulin Orders — IV Insulin Infusion Protocol — REVISED: 02/21/08</td>
</tr>
<tr>
<td></td>
<td>Orders for Adults with DKA and Hyperglycemic Hyperosmolar State (HHS) — APPROVED: 07/31/08</td>
</tr>
<tr>
<td></td>
<td>Transition Algorithm from I.V. to S.Q. Insulin for Patients with Diabetes or Hyperglycemia — APPROVED: 07/31/08</td>
</tr>
<tr>
<td></td>
<td>Insulin Pump Therapy (supplement)</td>
</tr>
<tr>
<td>Foot Care</td>
<td>Diabetic Foot Care — APPROVED: 04/23/04</td>
</tr>
<tr>
<td></td>
<td>Diabetic Foot Screen — APPROVED: 04/23/04</td>
</tr>
<tr>
<td></td>
<td>Diabetic Foot Exam — APPROVED: 04/23/04</td>
</tr>
<tr>
<td></td>
<td>Diabetic Foot Care/Referral Algorithm — APPROVED: 04/23/04</td>
</tr>
<tr>
<td></td>
<td>High Risk Scenario and Ulcer Management — APPROVED: 04/23/04</td>
</tr>
<tr>
<td></td>
<td>Foot Screening Mapping Examples (supplement)</td>
</tr>
<tr>
<td>Pain Management</td>
<td>Recommendations for Treatment of Painful Peripheral Diabetic Neuropathy in Adults — APPROVED: 04/26/07</td>
</tr>
<tr>
<td>Care of the Elderly</td>
<td>Considerations for Elderly Persons with Diabetes (supplement)</td>
</tr>
<tr>
<td></td>
<td>Guidelines for Management of the Elderly with Diabetes in Long-Term Care Facilities (supplement)</td>
</tr>
<tr>
<td></td>
<td>Screening and Management of Hyperglycemia in the Geriatric Population — APPROVED: 10/23/08</td>
</tr>
<tr>
<td>Authors</td>
<td>Texas Diabetes Council Authorship – Minimum Practice Recommendations, Algorithms and Reports — REVISED: 12/04/08</td>
</tr>
</tbody>
</table>
Texas Diabetes Council

A1c Goals

Individualize goal based on patient risk factors

A1c < 6-7% A1c < 7-8%

Intensify management if:
- Absent/stable cardiovascular disease
- Mild-moderate microvascular complications
- Intact hypoglycemia awareness
- Infrequent hypoglycemic episodes
- Recently diagnosed diabetes

Less intensive management if:
- Evidence of advanced or poorly controlled cardiovascular and/or microvascular complications
- Hypoglycemia unawareness
- Vulnerable patient (i.e., impaired cognition, dementia, fall history)

A1c is referenced to a non-diabetic range of 4-6% using a DCCT-based assay. ADA Clinical Practice Recommendations.
Diabetes Care 2009;32(suppl 1):S19-20

References

Diabetes Minimum Practice Recommendations

Exam/Test/Counseling Schedule

Suggested Result Codes: **O**=Ordered, **N**=Normal, **A**=Abnormal, **E**=Done Elsewhere, **R**=Referred

<table>
<thead>
<tr>
<th>1.</th>
<th>Complete history & physical</th>
<th>Initial visit and at clinician’s discretion (including risk factors, exercise & diet)</th>
<th>Date Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Diabetes Education</td>
<td>Initial visit and at clinician’s discretion</td>
<td>Date Result</td>
</tr>
<tr>
<td>3.</td>
<td>Medical Nutrition Therapy</td>
<td>Initial visit and at clinician’s discretion</td>
<td>Date Result</td>
</tr>
<tr>
<td>4.</td>
<td>Exercise Counseling</td>
<td>Initial visit and at clinician’s discretion</td>
<td>Date Result</td>
</tr>
<tr>
<td>5.</td>
<td>Psychosocial Counseling</td>
<td>Initial visit and at clinician’s discretion</td>
<td>Date Result</td>
</tr>
<tr>
<td>6.</td>
<td>Lifestyle/Behavior Changes Counseling</td>
<td>Initial visit and at clinician’s discretion</td>
<td>Date Result</td>
</tr>
<tr>
<td>7.</td>
<td>Weight/Height/BMI</td>
<td>Every Visit</td>
<td>Date Result</td>
</tr>
<tr>
<td>8.</td>
<td>Blood Pressure</td>
<td>Every Visit</td>
<td>Date Result</td>
</tr>
<tr>
<td>9.</td>
<td>Foot Inspection</td>
<td>Every Visit</td>
<td>Date Result</td>
</tr>
<tr>
<td>10.</td>
<td>Oral/Dental Inspection</td>
<td>Every Visit</td>
<td>Date Result</td>
</tr>
<tr>
<td>11.</td>
<td>Growth and Development</td>
<td>Every Visit</td>
<td>Date Result</td>
</tr>
<tr>
<td>12.</td>
<td>Aspirin/Antiplatelet Prophylaxis</td>
<td>Every Visit</td>
<td>Date Result</td>
</tr>
<tr>
<td>13.</td>
<td>A1c2</td>
<td>Every 3–6 months</td>
<td>Date Result</td>
</tr>
<tr>
<td>14.</td>
<td>Kidney evaluation</td>
<td>Type 1: Annually beginning 5 years from diagnosis Type 2: Initial visit then annually</td>
<td>Date Result</td>
</tr>
<tr>
<td>15.</td>
<td>Dilated funduscopic eye exam</td>
<td>Type 1: Annually beginning 5 years from diagnosis Type 2: Initial, then annually</td>
<td>Date Result</td>
</tr>
<tr>
<td>16.</td>
<td>Oral/Dental Exam</td>
<td>Annually or as needed</td>
<td>Date Result</td>
</tr>
<tr>
<td>17.</td>
<td>Foot Exam</td>
<td>Annually or as needed</td>
<td>Date Result</td>
</tr>
<tr>
<td>18.</td>
<td>Lipid Profile</td>
<td>Annually if at goal; otherwise every 3–6 months (> age 18)</td>
<td>Date Result</td>
</tr>
<tr>
<td>19.</td>
<td>Immunizations</td>
<td>Annually Every 10 Years Initial; repeat per ACIP Per CDC Schedule</td>
<td>Date Result</td>
</tr>
</tbody>
</table>

1. **Diabetes Education** should address the following: self-management skills (i.e. monitoring, sick day management), medications, frequency of hypoglycemia, high-risk behaviors (e.g. smoking, alcohol), adherence with self-care (self-management plan from the last visit including diet, medication use, exercise plan), assessment of complications, diabetes knowledge and follow-up of referrals.

2. **Intensive management** if: Absent/stable cardiovascular disease, mild-moderate microvascular complications, intact hypoglycemia awareness, infrequent hypoglycemic episodes, recently diagnosed diabetes. **Less intensive management** if: Evidence of advanced or poorly controlled cardiovascular and/or microvascular complications, hypoglycemia unawareness, vulnerable patient (i.e. impaired cognition, dementia, fall history).
Prevention and Delay of Type 2 Diabetes in Children and Adults with Impaired Fasting Glucose (IFG) and/or Impaired Glucose Tolerance (IGT)

Screening:
1. **General population; BMI ≥ 25**
 - Individuals ≥ 45 years
 - Baseline and q 3 years
2. **High risk population ≥ 18 years; BMI ≥ 25**
 - Baseline and yearly
3. **Children and youth at risk**
 - Baseline at age 10 and q 2 years
 - Overweight BMI (≥85th percentile for age and gender and ≥ two risk factors)

Risk Factors:
- 1st degree (and/or 2nd degree in children) relative with diabetes
- Hx of gestational diabetes or delivery of a baby weighing >9 lbs
- High-risk ethnic group
- Hypertension
- Dyslipidemia
- Polycystic Ovary Syndrome
- Metabolic and/or Insulin Resistance Syndromes
- Vascular disease
- Acanthosis nigricans

Unsuccessful Outcome: Children
- Abnormal 2-hr OGTT—Intervention and Continue Lifestyle
- Refer to Pediatric Endocrinologist or Obesity Specialist

Unsuccessful Outcome: Adults
- Abnormal FPG and/or 2-hr OGTT—Consider Adding Drug Therapy to Lifestyle Intervention

INITIAL INTERVENTION: LIFESTYLE
- Weight Loss: 5–10% if BMI ≤ 40; 10–15% if BMI > 40
- Exercise/Physical Activity: ≥30–60 minutes per day
- Hypocaloric diet: Deficit 250–1000 Kcal per day ± Meal Replacements
- Behavior Modification: Nutrition/Family Counseling
- Regular Follow-up by PCP

TESTING:
- FPG Recommended: (if abnormal confirm X 1); however 2-hr OGTT acceptable in adults and should be used for diagnosis in children (routine measurement of insulin levels is not recommended)

DIAGNOSIS:
- **IFG**
 - FPG ≥ 100 and < 126 mg/dL and/or
 - IGT 2-hr OGTT
 - Glucose ≥ 140 and < 200 mg/dL

DIAGNOSIS: TYPE 2 DIABETES
- FPG ≥ 126 mg/dL and/or 2-hr OGTT ≥ 200 mg/dL—Refer to Texas Diabetes Council Algorithms

SUCCESSFUL OUTCOME
- Normal FPG and/or 2-hr OGTT Lifestyle Maintenance—Continue Physical Activity and Weight Loss/Maintenance

REASSESS YEARLY
- FPG and/or 2-hr OGTT

ABNORMAL—Consider Drug Therapy

NORMAL—Continue Lifestyle Intervention

Abnormal FPG and/or 2-hr OGTT every 6 months
- Abnormal—Re-evaluate Lifestyle and Medication Regimen
- Normal—Continue Current Therapy

<table>
<thead>
<tr>
<th>Description</th>
<th>BMI</th>
<th>FPG</th>
<th>OGTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fasting plasma glucose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.75 kg to max 75 g oral glucose tolerance test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary care provider</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Footnotes:

7. See Texas Diabetes Council algorithms for treatment of exercise, weight loss, and nutrition.

9. No medication is currently FDA-approved for prevention of type 2 diabetes in adults, but a number of studies provide evidence for drug treatment.

10. Metformin is as effective as lifestyle intervention in individuals <age 45 or those with BMI ≥35; metformin is nearly ineffective in individuals ≥age 60 or those with BMI <30 (DPP evidence).

Weight Loss Algorithm for Overweight and Obese Adults

1. **Normal**
 BMI 18.5–24.9
 - Reinforce Healthy Lifestyle, Diet, and Exercise

2. **Obtain Accurate Height (Ht) and Weight (Wt); Calculate Body Mass Index (BMI)** (See Table on Page 2 of 2)

3. **Obesity**
 BMI ≥30
 - Overweight
 BMI 25–29.9

4. **Class 3 Obesity**
 BMI ≥40
 - Consider Contributing Factors
 - Drugs
 - Hypothyroidism
 - Cushing Syndrome
 - Male Hypogonadism
 - Adult GH Deficiency
 - Consider Obesity Pharmacologic Monotherapy as Adjunct to Lifestyle Changes if: BMI ≥27 with Comorbidities or if BMI ≥30

5. **Wt Loss Targets**
 - 2–3 unit reduction in BMI
 - 5–10% reduction in Wt
 - ≤15% Wt Loss for Class 3 Obese Pts
 + Significant Improvement in Comorbidities

6. **Assess Comorbidities and Risk Factors**
 - Metabolic or Insulin Resistance Syndromes; Waist Circumference (Men ≥40 inches; Women ≥35 inches)
 - Dyslipidemia: Elevated LDL-C and/or TG; Low HDL-C; HTN;
 - Impaired Fasting Glucose (FPG 100–125 mg/dL); Impaired Glucose Tolerance (Post-challenge PG 140–199 mg/dL); Diabetes Mellitus (FPG ≥126 mg/dL; Post-challenge PG ≥200 mg/dL)
 - Coronary Heart or Other Vascular Disease (CVD); Sleep Apnea; DJD; GERD; Gallstones; NAFLD/NASH; Polycystic Ovary Syndrome; Urinary Incontinence

7. **Consider Referral for Bariatric Surgery**
 as Adjunct to Lifestyle Changes if: BMI ≥35 with Comorbidities or if BMI ≥40

8. **Offer Medically-Supervised Wt Loss Intervention**
 - Pt Motivated
 - 6 months
 - Targets Met
 - Targets Not Met
 - Targets Not Maintained
 - Targets Maintained
 - Consider Switching Drug Class or Using Combination Therapy

9. **Consider Obesity Pharmacotherapy for Maintenance of Wt Loss**
 (See Pharmacotherapy Box)

10. **Maintain Healthy Lifestyle, Diet, and Exercise**
 and Monitor Wt Weekly for Life with Periodic Follow-up by HCP

11. **Pt Not Motivated**
 - Educate; Manage Risk Factors Aggressively, and Reassess Readiness to Change Periodically
 - 3–6 months
 - Targets Not Met
 - Pt Motivated and Adherent

12. **See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp**

1 or 2 – Weight Loss Algorithm for Overweight and Obese Adults – Revised 01/27/05
Body Mass Index Table

<table>
<thead>
<tr>
<th>BMICategory</th>
<th>BMI</th>
<th>Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td><18</td>
<td>0-108</td>
</tr>
<tr>
<td>Normal</td>
<td>18-25</td>
<td>110-235</td>
</tr>
<tr>
<td>Overweight</td>
<td>25-30</td>
<td>237-421</td>
</tr>
<tr>
<td>Obese I</td>
<td>30-35</td>
<td>423-651</td>
</tr>
<tr>
<td>Obese II</td>
<td>35-40</td>
<td>653-908</td>
</tr>
<tr>
<td>Obese III</td>
<td>>40</td>
<td>910-</td>
</tr>
</tbody>
</table>

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHF</td>
<td>Congestive Heart Failure</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>DJD</td>
<td>Degenerative Joint Disease</td>
</tr>
<tr>
<td>FPG</td>
<td>Fasting Plasma Glucose</td>
</tr>
<tr>
<td>GERD</td>
<td>Gastro-esophageal Reflux Disease</td>
</tr>
<tr>
<td>HCP</td>
<td>Health Care Professional</td>
</tr>
<tr>
<td>HDL-C</td>
<td>High-density Lipoprotein Cholesterol</td>
</tr>
<tr>
<td>HTN</td>
<td>Hypertension</td>
</tr>
<tr>
<td>LDL-C</td>
<td>Low-density Lipoprotein Cholesterol</td>
</tr>
<tr>
<td>MAOI</td>
<td>Monoamine Oxidase Inhibitors</td>
</tr>
<tr>
<td>NAFLD</td>
<td>Non-alcoholic Fatty Liver Disease</td>
</tr>
<tr>
<td>NASH</td>
<td>Non-alcoholic Steatohepatitis</td>
</tr>
<tr>
<td>SSRI</td>
<td>Selective Serotonin Reuptake Inhibitors</td>
</tr>
<tr>
<td>TG</td>
<td>Triglycerides</td>
</tr>
</tbody>
</table>

Footnotes:

1. Adapted from NIH/NHLBI/NAASO;1998; NIH Publication No. 98-4083 (Obes Res 1998; 6(Suppl 2):S1-S2105)
2. Consider starting obesity pharmacotherapy concurrent with other treatment modalities at presentation in motivated/adherent pts if BMI ≥35 with comorbidities or ≥40 with no comorbidities
6. See Glycemic Control Algorithm in Type 2 Diabetes Mellitus in Children and Adults; Diabetes medications may need to be adjusted to avoid hypoglycemia in pts who lose wt
7. Most antipsychotics, tricyclic antidepressants, lithium, valproic acid, carbamazepine, insulin/insulin analogs, sulfonylureas, thiazolidinediones, cyproheptidine, glucocorticoids, and estrogens/progestins may be associated with gain
8. Assuming BMI ≥25 and/or waist circumference ≥40 inches in men, ≥35 inches in women, and one or more major comorbidity
9. Calorie deficit of 250 Kcal/day will result in ~1/2 lb/week wt loss (1000 Kcal/day ~2 lb/week wt loss)
10. FDA-approved for adjunctive short-term use ≤3 months for wt loss; see drug prescribing brochure; -Cost–$0.85/30 mg pill (generic- AWP 2003)
11. FDA-approved for use for up to 2 years for wt loss and maintenance of wt loss; see drug prescribing brochures; -Cost– sibutramine $3.64/15 mg pill; orlistat $1.38/120 mg pill (AWP 2003)
13. Orlistat can be used with the other agents; sibutramine and phentermine are not to be used in combination
14. Orlistat is available in a fixed-dose combination with phentermine and topiramate (Qsymia®) in 2009

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
Diabetes Treatment Algorithms

Overweight Children and Adolescents

Weight Management Algorithm for Overweight Children and Adolescents

Initial Wt Loss Targets
(1st 6 Months)
- >95th%ile BMI for Age & Gender
- >85th%ile BMI with Comorbidities

Pubertal: 10% Body Wt Loss
Pre-pubertal: ≥ age 7 = 1–2 lbs per Month Wt Loss
< age 7 = Wt Maintenance or Modest Wt Loss

Degree of Wt Loss will Depend on the Severity of the Comorbidity

Assess for Comorbidities
- Sleep Apnea; Pseudotumor Cerebri; Dyslipidemia (Elevated LDL-C and/or TG; Low HDL-C); HTN;
- NAFLD; GERD; Wt-bearing Joint Pain; PCOS /Hyperandrogenism; AN; Psychological Adjustment Disorders; T2DM (FPG ≥126 mg/dl;
- Post Challenge PG ≥200 mg/dl)

Assess for Risk Factors and/or Contributing Factors
- Medications*: Hypothyroidism; Cushing Syndrome; Prader-Willi Syndrome; SGA; Low Birth Wt; Post Malignancy Treatment

Obtain Accurate Height (Ht) & Weight (Wt)
Calculate Body Mass Index (BMI—see page 3 of 4)
(Refer to gender-specific BMI Chart on page 4 of 4)

At Risk for Overweight
85%–95th%ile BMI for Age & Gender; Rapid Wt Gain

Overweight
>95th%ile BMI for Age & Gender

Offer Medically Supervised Wt Management Intervention

Pt/Family Motivated

Educate Patient and Family; Manage Comorbidities and Risk Factors; Reassess Readiness Periodically

Consider Obesity Pharmacologic Monotherapy as Adjuvant to Lifestyle Changes if BMI ≥27 with Comorbidities or if BMI ≥30

Appetite Suppressant
Sibutramine

Contraindicated in: Uncontrolled HTN; Glaucoma (Narrow-angle); Arrhythmia; CVA; CVD; CHF; Concurrent SSRI; MAOI Therapy; Pregnancy; Bulimia/Anorexia

Lipase Inhibitor Orlistat

Contraindicated in: Chronic Malabsorption; Cholestasis; Orlistat Hypersensitivity; Concurrent Cyclosporin Therapy; Pregnancy

BMI = Wt in kg
(HT in m)²
= Wt in lb x 703
(HT in inches)²

Normal
<85th%ile BMI for Age & Gender

Reinforce Healthy Lifestyle, Diet, and Exercise;
Watch for Rapid Wt Gain

Assess for Risk Factors and/or Contributing Factors

Maintain Healthy Lifestyle, Diet and Exercise;
Reinforce Education, Monitor Wt Weekly for Life with Periodic Follow-up by HCP

Consider Bariatric Surgery for adolescents
who meet criteria. (See page 2)

Wt Loss Maintenance

Targets Met

≥6 months

Motivated & Targets Not Met

Targets Not Met

≥6 months

Pt/Family Not Motivated

Pt/Family Not Motivated

≥6 months

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
Diabetes Treatment Algorithms

2 of 4 – Weight Management Algorithm for Overweight Children and Adolescents – Approved 04/28/05

Criteria for Bariatric Surgery
Adolescents being considered for bariatric surgery should:

- Have failed 6 months of organized attempts at wt management, as determined by their primary care provider
- Have attained or nearly attained physiologic maturity
- Be severely obese (BMI ≥40) with serious obesity-related comorbidities or BMI ≥50 with less severe comorbidities
- Demonstrate commitment to comprehensive medical and psychologic evaluations both before and after surgery
- Agree to avoid pregnancy for at least 1 yr postoperatively
- Be capable of and willing to adhere to nutritional guidelines postoperatively
- Provide informed consent to surgical treatment
- Demonstrate decisional capacity
- Have a supportive family environment

Footnotes:
1. Adapted from the Texas Council’s Weight Loss Algorithm for Overweight and Obese Adults

4. Medications that affect insulin sensitivity:

Inhaled steroids:
- 1000 mcg/day fluticasone (Flovent)
- 2000 mcg/day of all others

Oral Steroids:
- 20 days in previous year, or any within 60 days of screening
- L-asparaginase
- FK506 (Tacrolimus)
- Cyclosporine (Neoral/Sandimmune)
- Niacin

Medications known to cause wt gain:
- Lithium
- Insulin/Insulin Analogs
- Sulfonylureas
- Cyproheptadine
- Estrogens/Progestins

5. No evidence-based outcomes data are yet available for weight loss targets

Additional References

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
APPENDIX: Weight (lb) for different combinations of height (inch) and BMH (kg/m²)

<table>
<thead>
<tr>
<th>Height (in)</th>
<th>Weight (lb)</th>
<th>BMH (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>37</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>38</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>39</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>40</td>
<td>32</td>
<td>17</td>
</tr>
<tr>
<td>41</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>42</td>
<td>36</td>
<td>19</td>
</tr>
<tr>
<td>43</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>44</td>
<td>40</td>
<td>21</td>
</tr>
<tr>
<td>45</td>
<td>42</td>
<td>22</td>
</tr>
<tr>
<td>46</td>
<td>44</td>
<td>23</td>
</tr>
</tbody>
</table>

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
2 to 20 years: Girls
Body mass index-for-age percentiles

NAME
RECORD #

Date Age Weight Stature BMI* Comments

*To Calculate BMI: Weight (kg) = Stature (cm) - Stature (cm) x 10,000
or Weight (kg) - Stature (in) - Stature (in) x 703

Published May 30, 2000 (modified 10/16/00).

SOURCE: Developed by the National Center for Health Statistics in collaboration with
the National Center for Chronic Disease Prevention and Health Promotion
http://www.cdc.gov/growthcharts

2 to 20 years: Boys
Body mass index-for-age percentiles

NAME
RECORD #

Date Age Weight Stature BMI* Comments

*To Calculate BMI: Weight (kg) = Stature (cm) - Stature (cm) x 10,000
or Weight (kg) - Stature (in) - Stature (in) x 703

Published May 30, 2000 (modified 10/16/00).

SOURCE: Developed by the National Center for Health Statistics in collaboration with
the National Center for Chronic Disease Prevention and Health Promotion
http://www.cdc.gov/growthcharts
Exercise Algorithm
Type 2 Diabetes Prevention and Therapy

Impaired Fasting Plasma Glucose
100–125 mg/dL

Screening/Risk Assessments
Minimum Standards for Diabetes Care in Texas

- **Cardiovascular Disease (CVD)**
- **Proliferative Retinopathy**
- **Vascular/Orthopedic Peripheral Neuropathy**

Diagnosis Diabetes Mellitus
FPG ≥ 126 mg/dL

- **Consider ETT¹ Prior to Prescription**
- **Low intensity/Low impact activity²**
- **Low intensity/Low impact activity²,³**

One or more major risk factors:
- Hypertension
- Smoking
- Hyperlipidemia
- Family history of CVD

No

- Age <35 yrs.
 - Moderate or vigorous activity

- Age ≥35 yrs.
 - Moderate physical activity
 - ETT recommended before vigorous physical activity¹

Yes

- **Low intensity/Low impact activity²**

1. **Recommendation for Exercise Tolerance Test**
 Based on the clinical context in which they occur, if your patients have any of the following signs or symptoms of cardiovascular or metabolic disease, consider an exercise tolerance test (ETT) before recommending moderate or vigorous activity.

 - Pain, discomfort (or other anginal equivalent) in the chest, neck, jaw, arms, or other areas that may be ischemic in nature
 - Shortness of breath at rest or with mild exertion
 - Dizziness or syncope
 - Orthopnea or paroxysmal nocturnal dyspnea
 - Ankle edema
 - Palpitations or tachycardia
 - Intermittent claudication
 - Unusual fatigue or shortness of breath with usual activities
 - Any macrovascular disease
 - Any microvascular disease
 - Peripheral vascular disease

2. Moderate activity is recommended to achieve physiologic improvement.

3. Orthotics as indicated.

1. This is recommended to determine activity levels.

If your patients are “apparently healthy” and have fewer than two major risk factors for cardiovascular disease (CVD), then they are categorized by age.

- For men and women under 35 yrs. of age, there are no limitations. They can safely begin or continue a program of moderate or vigorous activity.
- If they exceed the age limit (≥35 yrs.), it is safe to limit your recommendations to moderate activity (55% to 70% maximum heart rate) for both genders.

Patients in this group who wish to participate in vigorous or competitive activities should be considered for an ETT screening.

If your patients have one or more major risk factors for cardiovascular disease, they should undergo an ETT before beginning a moderate exercise program. It is important to underscore the fact that the majority of your patients, regardless of risk factors, can and should be encouraged to start or continue a program of regular moderate physical activity.

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
CONSIDERATIONS FOR PRESCRIBING PHYSICAL ACTIVITY FOR TYPE 2 DIABETES PREVENTION AND TREATMENT

Significant health benefits can be obtained by including an accumulated 30 minutes of moderate physical activity on most, if not all, days of the week.

“Regular physical activity” includes all movements in everyday life, including work, recreation, exercise, and sporting activities.

- **Low Intensity/Low Impact Activity** – includes activities like walking, housework, light gardening, light yard work, and social dancing
- **Moderate Intensity Activity** – includes activities like brisk walking, vigorous gardening, slow cycling, aerobic dancing, doubles tennis, or hard work around the house

PRECAUTIONS FOR EXERCISE PRESCRIPTION

Retinopathy

Patients with proliferative diabetic retinopathy have abnormal hemodynamic responses of the cerebral and ophthalmic circulation both at rest and with exercise. **Vigorous physical activity, especially isometric contractions, produces significant increases in blood pressure and can accelerate proliferative diabetic retinopathy with significant risk of retinal and vitreal hemorrhage and detachment.** Low impact/low intensity physical activity recommended.

Orthopedic Problems

Neuropathy and peripheral vascular disease can predict unnoticed foot injury. Footwear that relieves forefoot plantar pressure by up to 50% has been shown to be effective in preventing the recurrence of foot ulcers when worn for more than 60% of the day (Peirce, N. 1999. British Journal of Sports Medicine).

Guidelines for Exercise Prescription

1. Appropriate attire for physical activity, i.e., footwear – socks, shoes, insoles/orthotics
2. Do not exercise at peak hypoglycemic times
3. Monitor blood glucose before and during exercise if symptoms of hypoglycemia occur with exercise
4. Wear a form of personal identification or medical alert
5. Carry fast-acting carbohydrate, i.e., sucrose and glucose products
6. Examine feet after exercise
7. Maintain adequate hydration
Diabetes Medical Nutrition Therapy and Prevention Algorithm For Adults

Categories of Increased Risk
- IFG: Fasting glucose 100–125mg/dL* or
- IGT: Post challenge glucose 140–199mg/dL or
- A1c: 5.7–6.4%

Diabetes Mellitus
- Fasting glucose ≥ 126 mg/dL or
- 2 hr. PP ≥ 200 mg/dL or
- A1c ≥6.5%

Medical Nutrition Therapy
Recommend Registered/Licensed Dietitian or Certified Diabetes Educator with Experience in Diabetes Nutrition Counseling

Individual Nutrition Assessment
BMI, Waist Circumference/Waist-to-hip ratio, Medical History, Lab Values (Chemistry panel, Lipid panel, A1c, microalbumin-to-creatinine ratio), Diet History, Lifestyle, Physical Activity, Readiness to Change

Interventions
- Meal plan* – Distribute food throughout the day to avoid large concentrations of calories or carbohydrates that cause postprandial glucose elevations.
- **Recommended:** low CHO diet, no more than 45–65% Kcal from CHO
- **Not Recommended:** <130g CHO (~9 servings/day)
- Individualize meals and snacks to include healthy food choices
- ↑ dietary fiber intake to 14 g fiber/1,000 Kcal/day

Diabetes Self-Management Education (DSM E)
- Set individualized goals to meet patient needs
- Promote weight loss, if needed*
- Self-monitored blood glucose (SMBG)
- Increase physical activity*
- Incorporate other needed dietary modifications with meal plan

Fasting glucose >110 mg/dL
2-hr PP >140–180 mg/dL
A1c >6.5%
Monitor total CHO intake
Refer to Glycemic Control Algorithm

Overweight/Obesity
- BMI >25
- ↓ Set weight loss goals (5–10% minimum)
- ↑ physical activity

TG >150 mg/dL
- ↓ Total CHO intake
- ↑ Omega-3 fatty acids

LDL-C >100 mg/dL
- ↓ Saturated fat <7%
- ↓ total Kcal/day
- ↓ trans fats (minimized)
- ↓ cholesterol intake <200 mg/day
- ↑ omega-3 fatty acids
- ↑ soluble fiber 10–25g/day
- ↑ plant sterols / sterols

BP >130/80 mmHg
- Sodium restriction to ≤1.5g/day
- DASH diet

If proteinuric:
- Maintain protein intake between 0.8–1g/kg
- Continue sodium restriction

Monitor glucose (SMBG), A1c, weight, lipids, and blood pressure. Adjust food portions and distribution with medication and activity to achieve metabolic goals.

Follow-up Evaluation
Monitor glucose (SMBG), A1c, weight, lipids, and blood pressure. Modify meal plan as needed to achieve metabolic goals.

If metabolic targets are not met within 1–3 months, evaluate nutrition care plan, re-educate and review goals. Verify patient follow-up with healthcare provider for further assessment and treatment.

Footnotes
1. This test requires the use of a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water.
2. 2-hr post-challenge glucose.
3. Refer to Exercise Algorithm
5. Refer to Lipid Treatment Algorithm
6. Refer to Hypertension Algorithm
Medical nutrition therapy (MNT) is important in preventing diabetes, managing existing diabetes, and preventing, or at least slowing, the rate of development of diabetes complications. It is an integral component of diabetes self-management education (or training). The following recommendations and interventions are evidence-based.

The goal of these recommendations is to make people with diabetes and health care providers aware of beneficial nutrition interventions. This requires the use of the best available scientific evidence while taking into account treatment goals, strategies to attain such goals, and changes individuals with diabetes are willing and able to make. Achieving nutrition-related goals requires a coordinated team effort that includes the person with diabetes and involves him or her in the decision-making process. It is recommended that a registered dietitian, knowledgeable and skilled in MNT, be the team member who plays the leading role in providing nutrition care. However, it is important that all team members, including physicians, certified diabetes educators, nurses, pharmacists and other providers, be knowledgeable about MNT and support its implementation.

Goals: At risk for diabetes or with pre-diabetes

1) To decrease the risk of diabetes and cardiovascular disease (CVD) by promoting healthy food choices and physical activity leading to moderate weight loss that is maintained.

Goals: Individuals with diabetes

1) Achieve and maintain
 - Blood glucose levels in the normal range or as close to normal as is safely possible
 - A lipid and lipoprotein profile that reduces the risk for cardiovascular disease
 - Blood pressure levels in the normal range, less than 130/80
2) To prevent, or at least slow, the rate of developing complications of diabetes by modifying nutrient intake and lifestyle
3) To address individual nutrition needs, taking into account personal and cultural preferences and willingness to change
4) To maintain the pleasure of eating by only limiting food choices when indicated by scientific evidence

Goals: Specific Situations

1) For youth with type 1 diabetes, youth with type 2 diabetes, pregnant and lactating women, and older adults with diabetes, to meet the nutritional needs of these unique times in the life cycle.

2) For individuals treated with insulin or insulin secretagogues, to provide self-management training for safe conduct of physical activity, including the prevention and treatment of hypoglycemia and diabetes treatment during acute illness.
EFFECTIVENESS of Medical Nutrition Therapy

Recommendations

- Individuals who have pre-diabetes or diabetes should receive Individualized MNT; such therapy is best provided by a registered dietitian familiar with the components of diabetes MNT.
- Nutrition counseling should be sensitive to the personal needs, willingness to change, and ability to make changes of the individual with pre-diabetes or diabetes.

A. Nutrition Guidelines

1. Stress consistent timing of meals, snacks, and portion control. Review the number of servings needed per meal and snacks.
2. Eat a variety of foods every day including fruits and vegetables.
3. Achieve or maintain a desirable weight.
4. Reduce total calories if overweight or obese to lose weight.
5. Read nutrition facts labels.
6. Eat foods high in fiber (whole grain products, vegetables, raw fruit, beans, and legumes).
7. Eat the least amount of saturated fats and trans fats.

B. Carbohydrate (CHO) Intake

Low carbohydrate diets, restricting total CHO to less than 130 grams per day, are not recommended.

1. Total grams of carbohydrate should be individualized based on glucose control, medication and physical activity.
2. Consume more complex (unrefined) carbohydrates with fiber.
3. Eat 2 servings of fruits each day, preferably with lunch and dinner. One serving equals: ½ c. canned fruit or juice, or 1 c. fresh fruit. Avoid juices (except when hypoglycemic) which may cause the blood glucose to rise very rapidly. Focus on fresh fruits that have more fiber, but no more than 2–3 servings per day.
4. Eat 4–6 servings of non-starchy vegetables each day. One serving equals: ½ c. cooked vegetable, ½ c. vegetable juice, or 1 c. raw vegetable.
5. Other CHO choices include: 1 tortilla, 1 slice of bread, 1/3 c. cooked pasta, rice, garbanzo beans, ½ c corn, peas, potatoes, beans, or 6 saltine crackers. Limit CHO choices to 2–3 per meal.
6. Sucrose containing foods can be substituted for other CHO choices in the meal plan, if added to the meal plan.
C. Fiber Intake

1. Eat 14 grams per 1,000 calories. Example: 22 grams for 1,500 calories, 28 grams for 2,000 calories a day.
2. Major sources: raw fruits, unpeeled vegetables, beans, legumes, whole grain breads, pastas, and fiber-rich cereals (≥ 5 grams per serving).

D. Protein Intake

1. 15-20% of total calories per day; approximately 4-6 ounces per day (3 oz. = the size of a deck of cards).
2. Restrict to 0.8–1.0 gram protein/kg of body weight for adults with onset of early nephropathy. Restrict to 0.8 gram protein/kg of body weight for adults with onset of later stages of nephropathy
3. One serving is: 1 oz. lean beef, chicken, turkey, pork, lamb or fish, 1 c. skim milk, yogurt, 1 oz. cheese, 1 egg, 1 T. peanut butter
4. Adjustments should be made for conditions such as renal failure, hypertension, or hyperlipidemia.

E. Fat Intake

1. Limit dietary cholesterol to less than 200 mg per day
2. Limit saturated fat to less than 7% of total calories per day

 Sources: Animal fats (found in fatty meats, poultry skin, hydrogenated shortenings and fats, some vegetable oils (coconut, palm, palm kernel, cocoa butter), whole milk, whole milk products, butter, and most commercially baked products.
3. Minimum intake of trans fatty acids (found in most commercially baked products)
4. Use more mono-unsaturated fats, i.e., olive oil and poly-unsaturated fats, i.e., canola or corn oils.
5. Two or more servings of fish per week (with the exception of commercially fried filets)

F. Alcohol (Use with doctor’s approval)

1. Limited to a moderate amount (less than 1 drink per day for adult women and less than 2 drinks per day for adult men).
2. One drink is: 1.5 oz. distilled spirits, 5 oz. wine or 12 oz. beer.
3. Food should be consumed with alcoholic beverages to prevent hypoglycemia.

G. Reduced Calorie Sweeteners

Nonnutritive Sweeteners:

1. Acesulfame potassium
2. Aspartame
3. Neotame
4. Saccharin
5. Sucralose

Nutritive Sweeteners:

1. Glucose, dextrose, corn syrup
2. Fructose (fruit sugar), molasses, lactose
3. Honey, raw honey, invert sugar
4. Maltose, malted syrup, dextrin

Sugar Alcohols (Polyols):

1. Erythritol, isomalt, lactitol, maltitol, mannitol, sorbitol, xylitol, tagatose, and hydrogenated starch hydrolysates.

H. Sodium

- In normotensive and hypertensive individuals, a reduced sodium intake (e.g., 2,300 mg per day with a diet high in fruits, vegetables, and low-fat dairy products lowers blood pressure.
- Individuals with diabetes at risk for CVD, diets high in fruits, vegetables, whole grains, and nuts may reduce the risk.
- Individuals with diabetes and symptomatic heart failure, dietary sodium intake of <2,000 mg. per day may reduce symptoms.
- In most individuals, a modest amount of weight loss beneficially affects blood pressure.
- Choose low-sodium foods: fresh or frozen vegetables (avoid regular canned foods) and powdered seasonings with sodium (avoid onion and garlic salt). Avoid salty sauces such as soy sauce. Eat less fast food and convenience foods, these foods contain high levels of sodium.
Making food choices for a healthy lifestyle can be as simple as using these 10 Tips.

Use the ideas in this list to balance your calories, to choose foods to eat more often, and to cut back on foods to eat less often.

1. balance calories
 Find out how many calories YOU need for a day as a first step in managing your weight. Go to www.ChooseMyPlate.gov to find your calorie level. Being physically active also helps you balance calories.

2. enjoy your food, but eat less
 Take the time to fully enjoy your food as you eat it. Eating too fast or when your attention is elsewhere may lead to eating too many calories. Pay attention to hunger and fullness cues before, during, and after meals. Use them to recognize when to eat and when you’ve had enough.

3. avoid oversized portions
 Use a smaller plate, bowl, and glass. Portion out foods before you eat. When eating out, choose a smaller size option, share a dish, or take home part of your meal.

4. foods to eat more often
 Eat more vegetables, fruits, whole grains, and fat-free or 1% milk and dairy products. These foods have the nutrients you need for health—including potassium, calcium, vitamin D, and fiber. Make them the basis for meals and snacks.

5. make half your plate fruits and vegetables
 Choose red, orange, and dark-green vegetables like tomatoes, sweet potatoes, and broccoli, along with other vegetables for your meals. Add fruit to meals as part of main or side dishes or as dessert.

6. switch to fat-free or low-fat (1%) milk
 They have the same amount of calcium and other essential nutrients as whole milk, but fewer calories and less saturated fat.

7. make half your grains whole grains
 To eat more whole grains, substitute a whole-grain product for a refined product—such as eating whole-wheat bread instead of white bread or brown rice instead of white rice.

8. foods to eat less often
 Cut back on foods high in solid fats, added sugars, and salt. They include cakes, cookies, ice cream, candies, sweetened drinks, pizza, and fatty meats like ribs, sausages, bacon, and hot dogs. Use these foods as occasional treats, not everyday foods.

9. compare sodium in foods
 Use the Nutrition Facts label to choose lower sodium versions of foods like soup, bread, and frozen meals. Select canned foods labeled “low sodium,” "reduced sodium,” or “no salt added.”

10. drink water instead of sugary drinks
 Cut calories by drinking water or unsweetened beverages. Soda, energy drinks, and sports drinks are a major source of added sugar, and calories, in American diets.

Go to www.ChooseMyPlate.gov for more information.
Glycemic Goals¹
Individualize goal based on patient risk factors

\[
\text{A1c} \leq 6\% < 7\% < 8\%
\]

- FPG ≤ 110 mg/dL
- 2h PP ≤ 180 mg/dL

Initial Intervention²
1. Diabetes Self-Management Education and
2. Self-monitored Blood Glucose³ and
3. Medical Nutrition, Weight Control, Exercise and
4. Monotherapy if A1c <1% above goal otherwise Dual Therapy (optimize therapy as tolerated)

Goals not met after 3 months of optimized therapy

If A1c < 1% above goal:
- If on monotherapy → add second agent (oral or GLP-1)
- If on dual therapy → add third agent (oral or GLP-1 or insulin⁶)

If A1c ≥ 1% above goal:
- If on monotherapy → add second agent +/- once-daily insulin⁶
- OR add two non-insulin agents (oral or GLP-1)
- If on dual therapy → add third agent (oral or GLP-1)
- OR add insulin⁶

Goals Achieved
Continue Therapy
A1c every 3-6 months

Goals not met after 3 Months of optimized therapy
Add or intensify insulin⁶
Consider referral to endocrinologist / diabetes specialist

Recommended Options for Dual Therapy⁴
- Metformin
 - + TZD or DPP-4 or SU⁵ or GLP-1 or Meglitinide or colesevelam

Recommended Options for Triple Therapy
- Metformin
 - + TZD or SU⁵
 - + GLP-1 or DPP-4 or AGI or colesevelam

- Metformin
 - + TZD or DPP-4 or AGI or SU⁵ or colesevelam
 - + Insulin

Abbreviations
- AGI: Alpha-glucosidase inhibitors
- DPP-4: Dipeptidyl peptidase-4 Inhibitor
- FPG: Fasting plasma glucose
- GLP-1: Glucagon-like peptide-1 agonist
- PP: Postprandial
- SU: Sulfonylurea
- T2D: Thiazolidinediones

Footnotes
² If initial A1c on presentation is ≥10%, consider the use of insulin, with or without oral agents, as the initial intervention (see Insulin Algorithm). Other agents may be introduced as glycemic control improves. If ketoacidosis or recent rapid weight loss, consider Type 1 diagnosis.
³ These interventions should be maintained life-long; (refer to Medical Nutrition, Weight Loss, and Exercise Algorithms).
⁴ Refer to the Diabetes Medications Supplement: Working Together to Manage Diabetes found in the Texas Diabetes Council’s Diabetes Toolkit.
⁵ If a SU is selected, low dose glipizide ER or glimepiride are recommended because they have a lower incidence of hypoglycemia than glyburide.
⁶ Refer to Insulin Algorithm for Type 2 Diabetes Mellitus in Children and Adults / Initial Insulin Therapy for Type 2 Diabetes Mellitus in Children and Adults: A Simplified Approach.
Recent Review Articles

Dual Therapy

Metformin or Sulfonylurea + Acarbose

Metformin + Pioglitazone

Metformin + Rosiglitazone

Sulfonylurea + Pioglitazone

Sulfonylurea + Rosiglitazone

Metformin or Sulfonylurea + Exenatide

Nateglinide or Repaglinide + Metformin

Repaglinide + Metformin

Nateglinide + Metformin

Nateglinide + Thiazolidinedione

Repaglinide + Thiazolidinedione

Liraglutide + Metformin

Liraglutide + Sulfonylurea

Triple Therapy

Sulfonylurea + Metformin + Alpha glucosidase inhibitors

Sulfonylurea + Metformin + Thiazolidinedione
GLYCEMIC CONTROL BIBLIOGRAPHY (CONT.)

Sulfonylurea + Metformin + Exenatide

Liraglutide + Metformin and TZD

Liraglutide + Metformin and Sulfonylurea

Colesevelam

Hypertension Algorithm for Diabetes in Adults

Follow-up BP each visit
If microalbuminuria or nephropathy present (Table 1)

Assess Blood Pressure¹ (BP)
BP ≤130/80 mmHg BP >130/80 mmHg

Start ACE inhibitor (ACEI) therapy²–⁶
IF microalbuminuria or nephropathy present (Table 1)
IF African-American- Start ACEI in combination with diuretic or CCB
IF SBP ≥145mmHg and/or DBP ≥90mmHg⁶
Start with combination antihypertensive therapy

Reassess therapy in 4–8 weeks- Titrato to at least 1/2 max dose
Encourage self-monitoring of blood pressure¹
(on average ≥ 3 medications will be needed to achieve blood pressure goals)

Table 1
Microalbuminuria/Proteinuria³
- In Type 2 patients, an ACEI or angiotensin receptor blocker (ARB) may be used first line.
- In Type 1 patients, an ACEI is recommended to reduce protein excretion
- Consider the use of verapamil or diltiazem in patients with proteinuria unable to tolerate ACEI or ARBs.

DBP Diastolic Blood Pressure
MI Myocardial Infarction
SBP Systolic Blood Pressure

Add⁶ Diuretic OR Calcium Channel Blocker (CCB) OR Beta Blocker
IF Diuretic Chosen: (Preferred if no other compelling indications)
Creatinine <1.8 mg/dL Creatinine ≥1.8 mg/dL
Thiazide diuretic^ Loop Diuretic
(^ Max. dose 25mg Hydrochlorothiazide or equivalent)
IF Beta Blocker Chosen: (Strongly recommended if history of MI) Choose beta blocker without intrinsic sympathomimetic activity ⁷
IF CCB Chosen:
If Diltiazem or Verapamil Chosen: Pulse and conduction effects should be considered if combined with β blocker
If Dihydropyridine CCB8 Chosen: Not to be used without ACEI or ARB agents

ADD:
Reassess therapy in 4–8 weeks
Titrato to at least 1/2 max dose or add additional agent⁶

ADD: Medication not chosen from above
OR Go to Alternative Treatment**

ADD: α blocker, hydralazine, clonidine (caution with β blocker)

Footnotes
¹ Joint National Committee on Detection, Evaluation and Treatment of High Blood Pressure: The seventh report of the Joint National Committee on Detection, Evaluation and Treatment of High Blood Pressure (JNC 7). JAMA. 2003;289(19):2560-72; consider secondary causes as appropriate
² Maintain non-pharmacological therapy throughout treatment. Medical Nutrition Therapy Algorithm = low sodium diet (<2.4 g/day; if ≥ age 50, ≤ 1.5 g/day) + limit alcohol intake (1 oz./day for men, 0.5 oz./day for women) Weight Loss and Exercise Algorithms.
⁴ Monitor serum K⁺ and creatinine periodically
⁵ If intolerant to ACEI (except angioedema) consider angiotensin receptor blocker (ARB).
⁷ Metoprolol, carvedilol, bisoprolol, atenolol
⁸ Amlodipine, felodipine, isradipine, nicardipine, nisoldipine

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
HYPERTENSION ALGORITHM FOR DIABETES IN ADULTS

Proper blood pressure assessment

ACE inhibitor as 1st line therapy in Diabetes Mellitus

Diuretic as second line

Antihypertensive & Lipid Lowering Treatment to Prevent Heart Attack (ALLHAT) JAMA 288:2981-97, 2002

Beta-Blocker as second line

Verapamil or Diltiazem

Dihydropyridine calcium channel blockers

Alpha-Blockers
Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone. (ALLHAT Data) JAMA 283:1967–75, 2000

Blood Pressure Goal <130/80

Urinary Protein Excretion >1 gram/24 hour BP goal <125/75

Angiotensin Receptor Blockers

African Americans

Lipid Algorithm For Type 1 and Type 2 Diabetes Mellitus in Adults

FLP Goals:
- LDL-C <100 mg/dL (≤70 with CVD, CVA, or PVD)
- HDL-C ≥ 40 mg/dL
- TG <150 mg/dL

Abnormal fasting lipids:
- Initial therapy with TLC & Intensive Glucose Control (with A1c goal < 6%)
- Evaluate and treat secondary causes of dyslipidemia: alcohol, estrogen, anabolic steroids, corticosteroids, hypothyroidism, hepatic disease, nephrotic syndrome, chronic renal failure.
- LDL-C is the primary target of therapy unless TG ≥ 400 mg/dL, at which point TG then becomes the primary treatment target.

Definitions:
- TLC = Therapeutic Lifestyle Changes (refer to TDC Medical Nutrition, Weight Loss, and Exercise Algorithms)
- Statin = HMG Co-A Reductase Inhibitor
- TG = Triglycerides
- CVD = Cardiovascular disease
- CVA = Cerebrovascular accident
- PVD = Peripheral vascular disease

Footnotes:
1. If a fibrate is combined with a statin, then fenofibrate is preferred rather than gemfibrozil due to risk of myositis and rhabdomyolysis.
HMG CO-A REDUCTASE INHIBITORS LDL-C EQUIVALENCY IN PATIENTS WITH HYPERCHOLESTEROLEMIA*

<table>
<thead>
<tr>
<th>FLUVASTATIN</th>
<th>PRAVASTATIN</th>
<th>LOVASTATIN</th>
<th>PITAVASTATIN</th>
<th>SIMVASTATIN</th>
<th>ATORVASTATIN</th>
<th>ROSUVAstatin</th>
<th>EZETIMIBE/ SIMVASTATIN</th>
<th>APPROXIMATE % LDL ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mg</td>
<td>10 mg</td>
<td>10 mg</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>15–20</td>
</tr>
<tr>
<td>40 mg</td>
<td>20 mg</td>
<td>20 mg</td>
<td>—</td>
<td>5–10 mg</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>21–29</td>
</tr>
<tr>
<td>80-XL</td>
<td>40–80 mg</td>
<td>40 mg</td>
<td>1-2 mg</td>
<td>20 mg</td>
<td>10 mg</td>
<td>—</td>
<td>—</td>
<td>30–38</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>80 mg</td>
<td>4 mg</td>
<td>40 mg</td>
<td>20 mg</td>
<td>5–10 mg</td>
<td>10/10 mg</td>
<td>39–47</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>80 mg</td>
<td>40 mg</td>
<td>20 mg</td>
<td>10/20 mg</td>
<td>48–54</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>80 mg</td>
<td>40 mg</td>
<td>10/40 mg</td>
<td>55–59</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10/80 mg</td>
<td>>59</td>
<td></td>
</tr>
</tbody>
</table>

* Footnote: This information is not completely based on head to head comparison

REFERENCES

People with diabetes have a 2 to 4 fold higher risk of dying from cardiovascular disease. People with diabetes have a complex procoagulant state, which contributes to the increased risk of atherosclerotic events. Antiplatelet therapy is a simple intervention that can reduce the risk of events in this high-risk population. NHANES III data shows that 27% of people with diabetes are eligible for secondary prevention strategies, while an additional 71% had at least one risk factor for atherosclerotic disease. Thus, basically all persons with diabetes are candidates for antiplatelet therapy, yet only 13% of eligible patients were currently taking aspirin.1, 2

Recommendations:

1) People with diabetes who are age 30 or above should be offered aspirin therapy if no contraindications exist to therapy.

2) Dose: 75 to 325mg daily. An enteric-coated product may be used to minimize gastrointestinal side effects

3) If an aspirin allergy is present, clopidogrel may be recommended (75mg/day) for secondary prevention. Currently, no primary prevention trials in people with diabetes have been conducted. In primary prevention patients with multiple risk factors, the risk, benefit, and cost of clopidrogrel must be considered.

Do not use antiplatelet therapy in people with:

1) Bleeding tendency
2) Anticoagulant therapy
3) Recent gastrointestinal bleeding
4) Clinically active hepatic disease
5) Patients at risk of Reye’s syndrome

Combination Therapy:

In people with diabetes who have an event on aspirin, aspirin resistance may play a role.3

1) The CURE trial used combination therapy with aspirin 75mg to 325mg and clopidogrel 75mg every day. Though over 22% of the patients enrolled had diabetes, the relative risk of an event in subjects with diabetes was not reduced significantly by the combination.

2) No benefit has been shown with the addition of warfarin to aspirin therapy 4

Secondary Prevention

1) **Anti-platelet Trialists’**

a. Meta-analysis of 145 prospective controlled trials of antiplatelet therapy
b. Risk reduction of 38±12 vascular events per 1000 diabetics treated (p<0.02)
c. Placebo rate of events 22.3%, reduced to 18.5% on doses of 75mg to 325mg a day

2) Early Treatment of Diabetic Retinopathy Study (ETDRS)
a. Mixed group of primary and secondary prevention in 3711 diabetics
b. Dose: 650mg/day or placebo
c. Results: 9.1% had myocardial infarction (MI) on aspirin vs. 12.3% on placebo
d. No increase in retinal bleeding was seen on serial eye exams

3) Hypertension Optimal Treatment (HOT)
a. Mixed primary and secondary prevention trial in hypertensive type 2 diabetics
b. 1501 diabetics enrolled in study for average of 3.8 years follow-up
c. Dose: 75mg or placebo
d. Results: 15% reduction in pooled cardiovascular events (p=0.03), and a 36% reduction in the risk of MI (p=0.002)

4) Clopidogrel versus Aspirin in Patients at Risk of Ischemic Events (CAPRIE)
a. 19185 persons with recent atherosclerotic event randomized to clopidogrel or aspirin
b. Dose: clopidogrel 75mg every day, aspirin 325mg every day
c. 5.32% risk of ischemic stroke, MI, or vascular death with clopidogrel vs. 5.83% for aspirin (p=0.043)
d. Post-hoc subset analysis of 3866 subjects diagnosed with diabetes by intake questionnaire from investigator5
e. Composite outcome endpoint was: vascular death, MI, stroke, or hospitalization for angina or bleeding event.
f. Event rate was 15.6% vs. 17.7%/ year (p=0.042), for clopidrogrel and aspirin respectively. No significant difference in individual outcomes.
g. Would need to treat approximately 47 individuals with clopidrogrel instead of aspirin to reduce one event.

5) Effects of Clopidogrel in Addition to Aspirin in Patients with Acute Coronary Syndromes without ST-Segment Elevation. The Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators (CURE)
a. 12, 562 subjects who presented to the hospital with an acute coronary syndrome within 24 hours of symptoms
b. Given aspirin 75mg to 325mg every day plus one time dose of clopidogrel 300mg, followed by 75mg every day vs. aspirin alone
c. Results: In 2849 subjects who had diabetes, the combination group experienced a 14.2% event rate vs. 16.75% in the aspirin alone group.
d. Though the relative risk favored addition of clopidogrel, the reduction was not significant

6) Ticlopidine in Microangiopathy of Diabetes (TIMAD)
a. 435 diabetic with nonproliferative diabetic retinopathy
b. ticlopidine 250 mg two times a day or placebo
c. followed up to 3 years
d. fluorescein angiograms of eyes done
e. Reduction in progression of retinopathy by 67% (p=0.03) in ticlopidine group vs. placebo
f. Side effects limit usefulness: 2-3% experience neutropenia, serial CBC’s must be followed for a minimum of 3 months

Primary Prevention

1) Physician’s Health Study
a. Dose: 325mg every other day or placebo
b. 22, 071 participants followed for approximately 5 years, 533 had diabetes
c. Outcome: myocardial infarction in 11/275 (4.0%) on aspirin vs. 26/258 on placebo (10.0%). Relative risk = 0.39 (significance not reported)

References:
Insulin Algorithm for Type 1 Diabetes Mellitus in Children and Adults

abbreviations
- **Basal**: Glargine or Detemir
- **Bolus (prandial)**:
 - **Reg**: Regular Insulin (peak action 3-4 hrs)
 - **RAI**: Rapid Acting Insulin = Aspart, Glulisine, or Lispro (peak action 1-1 ½ hrs)
- **PPG**: Post-Prandial Glucose
- **SMBG**: Self-monitored blood glucose
- **TDI**: Total daily insulin dosage in units

split-mix insulin therapies
1. Two shots: NPH + Reg or RAI
 2:1 ratio AM; 1:1 ratio PM
2. Three shots: AM: NPH + Reg or RAI
 PM: Reg or RAI
 HS: NPH
 2/3 TDI ÷ as 2/3 AM NPH + 1/3 as Reg or RAI
 1/3 TDI ÷ as 1/2 PM Reg or RAI + 1/2 NPH at HS
3. Two shots Premix
 2/3 AM + 1/3 PM

Total Daily Insulin: 0.3-0.5 units/kg/day, and titrate to glycemic targets

glycemic goals
- Individualize goal based on patient risk factors
- **HbA1c**: ≤6% <7% <8%
- **FPG**: ≤110 ≤120 ≤140 mg/dL
- **2h PP**: ≤130 ≤180 ≤180 mg/dL

intensive insulin therapy (IIT)
Physiological Insulin-1:1 basal:bolus ratio SQ
- **Basal**: Glargine QD or Detemir QD-BID
- **Bolus**: RAI (or Reg) before each meal: If meal skipped, skip dose.

Pre-meal insulin dose includes:
1. Insulin to cover carbohydrate ingested; 1 unit RAI covers 500/tdi grams carbohydrate from meal
2. Additional insulin to correct for high SMBG; 1 unit RAI lowers PG by approximately 1800/tdi mg/dL (Reg lowers PG by ~1500/tdi)
3. Consider adjustment for exercise

Total Daily Insulin: 0.3-0.5 units/kg/day and titrate to glycemic targets

Follow HbA1c every 3-6 months and adjust regimen to maintain glycemic targets

Footnotes
1. Consider referring all type 1 patients to pediatric/adult endocrinologist/comprehensive diabetes specialty team, and consider continuous glucose monitoring. If insulin pump therapy is considered—refer to certified pump trainer.
3. Modern glucose meters give values corrected to plasma glucose.
4. Most type 1 patients need IIT to attain glycemic targets; IIT may be by SQ multiple injection or by SQ continuous insulin pump.
5. Dosages may differ in children and adolescents.
6. Twice daily dosing may be required at low basal insulin doses.
7. Strongly recommend referral to Registered/Licensed Dietitian or Certified Diabetes Educator with experience in diabetes nutrition counseling.
8. Consider decreasing 1 unit for every 30 minutes of vigorous physical activity.
9. IMPORTANT: See package insert for dosing.
Insulin Algorithm for Type 2 Diabetes Mellitus in Children and Adults

Glycemic Goals

Individualize goal based on patient risk factors

- A1c <6%
- A1c <7%
- A1c <8%

- FPG ≤110 mg/dL
- 2h PP ≤180 mg/dL

Once-daily Insulin Therapy

- Morning – Basal insulin
- Bedtime – Basal insulin or NPH
- Before supper (Evening)
 - NPH + R or F 2:1 ratio or
 - Premix 70/30 or 75/25

Starting dose

- 0.1-0.25 units/kg/day
- 6-10 units/day if patient is elderly or thin

Achieving Goals

- Adjust Basal insulin / Bedtime NPH based on FPG
- Adjust NPH + R or F / Premix based on bedtime glucose and FPG

Titration schedule

- Add 1 unit of insulin each day to reach glycemic goals OR
 - If FPG:
 - >180 mg/dL Add 6 units
 - 141–180 mg/dL Add 4 units
 - 121–140 mg/dL Add 2 units
 - 100–120 mg/dL Add 1 unit
 - 80-99 mg/dL No change
 - <80 mg/dL Subtract 2 units

Multi-dose Insulin Therapy (MDI)

- 2 injections
 - NPH with R or F (ratio 2:1) before AM and evening meal
 - Premix 70/30 or 75/25 before AM and evening meal
- 3 injections (especially if nocturnal hypoglycemia)
 - NPH with R or F morning; R or F evening; NPH bedtime or Premix (as above) morning, noon, evening

Starting dose

- 0.3-0.5 units/kg/day, divided as follows:
 - 2 injections: 2/3 morning; 1/3 evening
 - 3 injections: Premix: 1/3 morning; 1/3 noon; 1/3 evening
- NPH + R or F:
 - Before AM Meal
 - Basal insulin: 80% of TDD
 - Before evening meal
 - Basal insulin: 20% of TDD
 - At Bedtime
 - Basal insulin: 15% of TDD

Follow A1c every 3-6 months and Adjust Regimen to Maintain Glycemic Goals

- Current glucose meters give values corrected to plasma glucose.
- May also begin combination oral agent therapy. See Glycemic Control Algorithm for Type 2 Diabetes Mellitus in Children and Adults.

Footnotes

2. Combining metformin with insulin therapy has been shown to result in less weight gain and better glycemic control with lower insulin requirements.

3. Fast-acting insulin is given with the start of each meal. Regular insulin to be given 30-60 minutes before meals.

4. Consider referral to pediatric/adult endocrinologist/diabetes specialty team for insulin pump, Pramlintide.

5. Start lower and increase slower for thin/elderly/complicated patients.

6. Typical “carb” bolus = 1 unit bolus insulin covers 500/TDD × carbohydrate from meal (~10-15 gm); strongly recommend referral to Registered/Licensed Dietitian or Certified Diabetes Educator with experience in diabetes nutrition counseling (see Worksheet D).

7. See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
Initiation of Once Daily Insulin Therapy for Type 2 Diabetes Mellitus in Children and Adults

Glycemic Goals:
- Individualize goal based on patient risk factors
 - A1c ≤6% <7% <8%
 - FPG ≤110 120 140 mg/dL
 - 2h PP ≤130 180 180 mg/dL

Treatment Naive:
- A1c ≥10% or A1c <10% when considering early insulin initiation
 - If ketoacidosis or recent rapid weight loss, see Type 1 Diabetes algorithm
 - Oral Agent Failure; A1c above target

Initiate Insulin Therapy with daily Glargine or Detemir or bedtime NPH.

Beginning Dosage: 10 units or 0.1–0.25 units/Kg

Suggested Titration Schedule – Adjust Every 2-3 Days
- If FPG:
 - >180 mg/dL: Add 6 units OR Add 1 unit insulin each day until fasting SMBG is at goal
 - 141–180 mg/dL: Add 4 units
 - 121–140 mg/dL: Add 2 units
 - 100–120 mg/dL: Add 1 unit
 - 80–99 mg/dL: No change
 - <80 mg/dL: Subtract 2 units

If A1c remains >A1c goal over 3 months, discontinue oral secretagogue, continue oral insulin sensitizer(s) and initiate multi-dose insulin or intensive insulin therapy or consult an endocrinologist.

Footnotes
1. For the complete approach to insulin initiation in Type 2 Diabetes Mellitus, see Insulin Algorithm for Type 2 Diabetes Mellitus in Children and Adults.
3. Current glucose meters give values corrected to plasma glucose.
4. Usually with an insulin secretagogue (sulfonylurea, repaglinide or nateglinide) and sensitizer (metformin or thiazolidinedione). See Glycemic Control Algorithm.
5. The pharmacokinetic profile of NPH compared to that of glargine or detemir is less predictable, therefore can result in blood sugar variations and increased nocturnal hypoglycemia. Cost of glargine or detemir is 1.5-2 times that of NPH. Lispro 75/25 or Aspart 70/30 can be considered at pre-supper adjusting dosage according to HS and fasting SMBG.
6. IMPORTANT: See package insert for dosing.
7. If daytime hypoglycemia develops, contact healthcare professional.

Abbreviations:
- FPG: Fasting plasma glucose
- SMBG: Self-monitored blood glucose
- PP: Postprandial plasma glucose
A. Conversion from once-daily insulin to intensive/physiologic insulin replacement:

Oral therapy failure: Once-daily glargine was added to the oral regimen and titrated to 30 units per day. How do you add analog insulin if the patient reports the following SMBG values?

<table>
<thead>
<tr>
<th>Case</th>
<th>FPG</th>
<th>2-HR PP BRKFT</th>
<th>2-HR PP LUNCH</th>
<th>2-HR PP DINNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>105</td>
<td>140</td>
<td>140</td>
<td>240</td>
</tr>
<tr>
<td>Case 2</td>
<td>105</td>
<td>140</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td>Case 3</td>
<td>105</td>
<td>190</td>
<td>240</td>
<td>240</td>
</tr>
</tbody>
</table>

Case 1
- Continue the oral agents (± sulfonylurea) and 30 units glargine or detemir (or NPH)
- There are 2 approaches for adding analog (RAI) 10-15 minutes before a meal:
 - **#1** Arbitrary start: 5 units
 - Titrate: Add 2 units every 2 days to reach 2-hr pp goal
 - **#2** Carb-counting: 1 unit/50 mg/dL over 2-hr pp goal
 - PLUS
 - 1 unit/15 grams carbohydrate
 - Titrate: Add 1 unit/50 mg/dL >2-hr pp goal every 2 days

Cases 2 and 3

As above, but add and titrate analog before each meal where the postprandial glucose is above goal. Also, see part D below for more information on how to optimize the use of analog insulin. Re-evaluate each week to be certain that about half of the total daily dose is basal and half is bolus insulin.

B. Conversion from once-daily premix to intensive/physiologic insulin replacement:

Oral therapy failure: Once-daily 70/30 premixed insulin was added and titrated to 30 units per day. The fasting glucose is at goal, but daytime control is poor. How do you convert to physiologic insulin therapy?
a. **Basal insulin dose:** The first step in the conversion is based on the total dose of intermediate-acting insulin. In this case, the person is taking 21 units of NPH or aspart-protamine insulin (70% x 30 units = 21 units). So, give 21 units basal glargine (use “unit-for-unit” conversion for once-daily intermediate regimens). *Remember, do not stop oral agents (+ sulfonlurea) at this time.*

b. **Bolus insulin dose:** There are several ways to start the analog.

i. *See Case 1 (Arbitrary start or Carb-counting)*

ii. Begin with the previous dose of fast-acting insulin, divide it before meals and titrate every 2 days. In this case, the person was using 30 units of 70/30 or about 9 units of fast-acting insulin (30% x 30 units = 9 units). So, give 3 units of analog before each meal and titrate every 2 days as per Case 1.

C. **Conversion from twice-daily premix to intensive/physiologic insulin replacement:**

Oral therapy failure in an 80 kg person: 70/30 premixed insulin was started and advanced to 60 units per day: 40 units before breakfast and 20 units before dinner. The fasting glucose was at goal, but wide glycemic excursions occurred at other times during the day and night. How do you convert this person to physiologic insulin therapy? There are several approaches. Use which ever method you want.

a. **Start over and begin insulin at 0.5 units/kg.** Give half as basal insulin and half as analog, divided before meals. In this case, the starting dose would be 40 units per day. Start giving 20 units glargine each morning and about 7 units analog before each meal. Titrate the basal and bolus insulins every 2 days to fasting and 2-hr postprandial goals.

b. **Conversion based on current insulin usage:**

 Basal dose: The first step in the conversion is based on the **80% of the total dose of intermediate-acting insulin.** In this case, the person is taking 42 units of NPH or aspart-protamine insulin (70% x 60 units = 42 units). When a person is taking multiple doses of intermediate-acting insulin, we give only 80% as glargine. So, give 34 units basal glargine (80% x 42 =~34). *Remember, do not stop oral agents (+ sulfonlurea) at this time.*

 Bolus insulin dose: There are several ways to start the analog.

 i. *See Case 1 (Arbitrary start or Carb-counting)*

 ii. Begin with the previous dose of fast-acting insulin, divide it before meals and titrate every 2 days. In this case, the person was using 60 units of 70/30 or 18 units of fast-acting insulin (30% x 60 units = 18 units). So, give 6 units of analog before each meal and titrate every 2 days as per Case 1.

c. **The “80%-80%” rule:** Similar to the above method, but yields an ideal ratio of basal:bolus insulin in one step. The dose of basal glargine will be **80% of the total intermediate insulin**, and the **analog will be 80% of the glargine** dose, divided before meals.
Basal dose: = 80% of total intermediate insulin
= 80% x 42 units (70% x 60 = 42)
= 34 units glargine

Analog dose: = 80% of the glargine dose, divided TID
= 80% x 34 units = 27 units
= 27 units, divided TID = 9 units
= 9 units aspart, glulisine or lispro before meals

Note: Total dose of insulin is conserved and an ideal ratio between basal and bolus will always result with the “80%-80%” method.

D. Optimizing analog insulin use

Tight control of blood glucose requires that the patient participates in the management of their diabetes. This includes monitoring their blood glucose and learning to count carbohydrates or “carb count.” The following material explains how to calculate the dose of analog required to cover a meal and how to add extra analog to correct a hyperglycemic event.

a. Determining the dose of analog insulin to use before a meal

The “Rule of 500” is used to determine how many grams of carbohydrate 1 unit of analog insulin will cover. When this number is known, then the person can easily give the correct dose of analog by simply counting the grams of carbohydrate they intend to eat at the meal.

Specifically, 500 divided by the total daily insulin dose (500/TDI) yields the number of grams of carbohydrate that 1 unit of analog will cover. For example, if a person has established that they require about 50 units of insulin per day, then it follows that 1 unit of analog will cover 10 grams of carbohydrate (500/50 = 10). If the person carb counts 140 grams in the dinner meal, then the dose of analog will be 14 units given 10 minutes before eating.

b. Correcting for hyperglycemia

The “Rule of 1800” is used to determine how much insulin to use to bring a high glucose reading back to goal. Even with tight control, hyperglycemia occurs and people need to be able to correct this situation.

Specifically, 1800 divided by the total daily insulin dose yields a value indicating how much 1 unit of analog insulin will lower the blood glucose. Thus, if a person uses 90 units of insulin per day, then 1 unit of analog will reduce the blood glucose by 20 mg/dL (1800/90 = 20). This augment dose of insulin can be used by itself to correct hyperglycemia, or added to the bolus dose if glucose is high before a meal.
References

2. Spellman CW, Renda SM, Davis SN. Realizing the Potential of Insulin Therapy in Type 2 Diabetes: A Case Presentation-Based Monograph. presented at the American College of Osteopathic Internists 64th Annual Convention; Chicago, IL (September 30, 2004).

Reviews/Important Articles

• DeWitt DE, Hirsch IB. Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: scientific review. JAMA. 2003;289(17):2254-64.

Once Daily Insulin

Morning vs. Bedtime NPH

Morning vs. Bedtime Glargine

NPH vs. Glargine

Once Daily vs. Twice Daily Regimen

Multiple Dose Insulin Regimens (2-shot Regimens)

NPH/Regular vs. NPH/ short acting analogue therapy

70% NPH/ 30% Regular vs. Humalog Mix 75/25™ or Novolog Mix 70/30™

Multiple Dose Insulin Regimens (3-shot Regimens)

Intensive Insulin Therapy

This algorithm is not intended to be used for those individuals with Type 1 diabetes, diabetic ketoacidosis or hyperglycemic hyperosmolar states.

TARGET RANGE FOR GLYCEMIC CONTROL: 80–140 mg/dL (Generally 110 mg/dL)

1. Standard drip 100 units/100 mL 0.9% NaCl. Approved IV insulins include Regular, aspart and glulisine

2. Start IV insulin therapy when glucose is above target range. Insulin infusions should be discontinued when
 a. Patient has no history of diabetes and is receiving <1 Unit/hour
 b. Patient receives 1st dose of SC basal + bridging dose of fast analog or R (see #10)

3. Bolus dose and Initial Infusion rate: Divide initial glucose level by 100, then round to nearest 0.5 units for bolus AND initial infusion rate
 - **Examples:**
 1) Initial glucose=326 mg/dL: 326÷100=3.26, round to 3.5: IV bolus 3.5 units + start infusion @ 3.5 units/hour
 2) Initial glucose=174 mg/dL: 174÷100=1.74, round to 1.5: IV bolus 1.5 units + start infusion @1.5 units/hour

4. Intravenous Fluids
 - Most patients will need 5–10 g glucose per hour D5W or D5W½NS at 100–200 mL/hour or equivalent (TPN, enteral feeding, etc.)

5. Adjusting the Infusion:
 - **Algorithm 1:** Start here for most patients.
 - **Algorithm 2:** For patients not controlled with Algorithm 1, or start here if s/p CABG, solid organ or islet cell transplant, receiving glucocorticoids etc. or patient with diabetes receiving >80 units/day of insulin as an outpatient.
 - **Algorithm 3:** For patients not controlled on Algorithm 2. NO PATIENT STARTS HERE without authorization from the endocrine service.
 - **Algorithm 4:** For patients not controlled on Algorithm 3. NO PATIENT STARTS HERE
6. Moving from Algorithm to Algorithm:
 - **Moving Up**: When glucose remains outside the target range after titrating insulin
 - **Moving Down**: When glucose is <70 mg/dL x 2 or decreases >60 mg/dl in 1 hour

7. Patient Monitoring:
 - Hourly venous (lab) determinations until glucose <450 mg/dL; then capillary glucose (finger sticks) q 1 hour until glucose is within goal x 4 hours; then every 2 hours x 4 hours; If stable, decrease monitoring to every 4 hours
 - Hourly monitoring indicated for critically ill patients even if the glucose is stable
 - In hypotensive patients (BP <80/60), capillary glucose values may be inaccurate. Obtain venous blood for glucose determinations
 - If any of the following occur, temporarily resume hourly glucose monitoring, until glucose is again stable (2–3 consecutive values within target range):
 - Any change in insulin infusion rate
 - Significant changes in clinical condition
 - Starting or stopping pressor or steroid therapy
 - Starting or stopping dialysis
 - Starting, stopping or changing rates of TPN, PPN or tube feedings

8. Treatment of Hypoglycemia (Glucose <60 mg/dL)
 - Discontinue insulin drip AND
 - Give D50W IV Glucose 40–60 mg/dL 12.5 g (1/2 amp)
 - Glucose <40 mg/dL 25.0 g (1 amp)
 - Recheck glucose every 15–30 minutes and repeat D50W IV as above. Restart insulin drip, one algorithm lower, when glucose >80 mg/dL x 2
9. Notify the physician:
 ◦ For patients not responding to Algorithm 1 or 2.
 ◦ For hypoglycemia which has not resolved after administration of D50W IV and discontinuation of the insulin drip

10. Transition from IV insulin to SC insulin: “Basal-Analog” Method
 a. Calculate Total Daily Dose (TDD) for subcutaneous insulin
 \[
 TDD = \text{Infusion rate}/h \times 20h
 \]
 b. First dose SQ insulin includes [basal insulin + bridging dose aspart, glulisine, lispro or R] x 1
 1. If patient will begin eating give:
 • Half TDD as basal glargine, detemir* or NPH* Plus
 • Bridging insulin** @ 10% of basal insulin dose
 • Stop IV insulin
 • Continue primary I.V.
 2. If patient will continue NPO, TPN or tube feeding give:
 • All TDD as basal glargine, detemir* or NPH* Plus
 • Bridging insulin** @ 5% of basal insulin dose
 • Stop IV insulin and continue primary I.V.
 c. Proceed to “Inpatient Management of Insulin in the Non-Critical Care Setting” algorithm for management of daily basal insulin, prandial + supplemental insulin**

* No evidence-based data on inpatient transition from I.V. insulin to detemir. If detemir is selected, expect to use at least 25% greater dose than glargine. If the dose of detemir is <0.6 units/Kg, use half bid. If NPH is used as a basal insulin the dose is 2/3 of the TDD (whether or not the patient is eating) and is distributed bid as 2/3 A.M. and 1/3 H.S. or may be divided equally and given q 6h.

** R (regular insulin) is not preferred as a bridging or prandial insulin
REFERENCES:

ICU Insulin Orders – IV Insulin Infusion Protocol

(Not intended for use in patients with type 1 diabetes, DKA or hyperglycemic hyperosmolar states)

1) Start an IV Insulin Flow Sheet and keep record at bedside

2) Start IV: _____ D5W at 100ml/h
 _____ D5W½NS at _______ ml/h
 _____ Other: ___

3) Mix standard insulin drip:
 ♦ 100 units Regular, aspart or glulisine insulin in 100 cc NS (1 unit insulin /cc) (Circle one)

4) Give initial insulin bolus:
 ♦ Bolus units of I.V. insulin = Glucose ÷ 100 (e.g. if glucose = 240 mg/dL, give 2.5 units)

5) Start insulin infusion:
 ♦ Initial infusion rate of insulin units/h = Glucose ÷ 100 (e.g. if glucose=240, begin 2.5 units/h)

6) Target range for glucose:
 ♦ Low Target (circle one) High Target (circle one)
 70 100 or ________ mg/dL 110 120 140 or ________ mg/dL

7) Monitor capillary (finger stick) glucose every hour:
 ♦ Obtain lab glucose if finger stick BG is <40 or >400 mg/dL
 ♦ Change frequency of glucose monitoring to: _______________________________

8) Adjust insulin infusion rate each hour after initial insulin bolus and infusion
 ☐ Start on Algorithm 1 (No patient begins on Algorithm 3 or 4 without endocrine service authorization)
 ☐ Start on Algorithm 2 (s/p CABG, transplant, glucocorticoids or >80 units/d insulin outpatient)
 ♦ Move up or down on the same algorithm each hour if glucose remains outside the target range
 ♦ Advance to the next algorithm (i.e. 1→2 etc.) if outside target range at highest infusion rate
 ♦ Treat for hypoglycemia is glucose <60 mg/dL (see # 9)
 ♦ Decrease 1 algorithm (i.e. 3→2 etc.) if glucose 60-69 mg/dL x 2 or decreases >60 mg/dL in 1 hour

<table>
<thead>
<tr>
<th>Algorithm 1</th>
<th>Algorithm 2</th>
<th>Algorithm 3</th>
<th>Algorithm 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG units/h</td>
<td>BG units/h</td>
<td>BG units/h</td>
<td>BG units/h</td>
</tr>
<tr>
<td><70 Off</td>
<td><70 Off</td>
<td><70 Off</td>
<td><70 Off</td>
</tr>
<tr>
<td>70–109</td>
<td>70–109</td>
<td>70–109</td>
<td>70–109</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>120–149</td>
<td>120–149</td>
<td>120–149</td>
<td>120–149</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>150–179</td>
<td>150–179</td>
<td>150–179</td>
<td>150–179</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>300–329</td>
<td>300–329</td>
<td>300–329</td>
<td>300–329</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>>360</td>
<td>>360</td>
<td>>360</td>
<td>>360</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

<60 = Hypoglycemia (See #9 for treatment)

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
9) Treat for hypoglycemia if glucose <60 mg/dL or ________________ mg/dL.
 - Glucose 40-59 mg/dL: Give ½ ampule (12.5 grams glucose) D50W by slow IV push over 30 seconds.
 - Glucose <40 mg/dL: Give 1 ampule D50W (25 grams glucose) by slow IV push over 30 seconds
 - Decrease insulin drip rate by moving down 1 algorithm (i.e. from Algo 3 to Algo 2, etc.)
 - Recheck glucose in 15 minutes and repeat D50W, as above, if necessary

10) Call Endocrine Service if:
 - Other physicians make changes to subcutaneous or IV insulin regimen
 - TPN, steroids or feedings are started, stopped or changed
 - Other physicians turn off the insulin drip for any reason
 - Patient does not respond to above pathways for glycemic control

11) Transition from IV insulin to SC insulin: Proceed to the Insulin Transition Pathway

Physician: _______________________________ Time:_____________ Date:_____________
Orders for Adults with DKA and Hyperglycemic Hyperosmolar State (HHS)

These orders may be initiated in the Emergency Department

DKA: Moderate ketonemia, arterial pH <7.3, serum glucose >250 mg/dL, serum bicarbonate <18 mEq/L
HHS: Serum glucose >600 mg/dL, minimal ketonemia or ketonuria, serum bicarbonate >15 mEq/L, pH >7.3

<table>
<thead>
<tr>
<th>Admit</th>
<th>Date:</th>
<th>Time:</th>
<th>Location:</th>
<th>Attending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug allergies or adverse reactions</td>
<td>Yes: No known drug allergies</td>
<td>List:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Monitor and Record | 1. Vital signs & I&O every hour until stable, then every 2 hours x 24 hours
 - Insert Foley if no urine output within first hour or within ____________ hours
 - STAT fingerstick (capillary) blood glucose
 - (Use venous or arterial draw if glucose >450 or <45 mg/dL or SBP <60 mmHg)
 - Neuro checks every 2 hours (maintain seizure precautions) x 24 hours | | | |
| Diet | Yes: NPO | Ice Chips | | |
| Activity | Yes: Bed rest | Bathroom privileges with assistance | | |
| Admission lab | Yes: STAT Metabolic Profile (Glucose, BUN, Creatinine, Na, K, Cl, HCO3, Ca)
 - Serum ketones | Serum PO4, Mg | Arterial blood gas | CBC with diff. | |
| | Blood cultures x 2 | Urine C&S | A1C | TSH | |
| | 1. Blood glucose | Serum osmolarity (measured) | | | |
| | Record acidosis-ketosis gap (AKG = arterial pH – plasma ß-hydroxybutyrate. AKG >3 may indicate drug abuse) | | | |
| | Other: | | | |
| Additional labs & studies | Yes: K and HCO3, every _______ hour(s). Call results to physician (hourly monitoring is recommended) | Metabolic profile every 4 hours x 24 hours. | Call results to physician | |
| | Yes: Ca, PO4, Mg every _______ hours x 24 hours. | Call results to physician | | |
| | Record anion gap | AG = (Na) – (Cl + HCO3) | | |
| | EKG | Chest X-ray | Portable chest X-ray | |
| | Other: | | | |
| Initial IV fluids | Run IV at _______ mL per hour for _______ hours (Adjust for fluid volume already given in ER) | Use 0.9% NaCl if corrected sodium is low (less than _______ mEq/L)
 - 0.45% NaCl if corrected serum sodium is normal or elevated
 - (Corrected sodium: Add 1.6 mEq to Na lab value for each 100 mg/dL glucose greater than 100 mg/dL) | | |
| | Other: | | | |
| Mix standard insulin drip | Discontinue all previous insulin orders | Mix 100 units Regular insulin in 100 mL NS | | |
| | Other: Mix units of insulin in mL NS | | | |
| Give initial IV insulin bolus | Yes: Bolus _______ units Regular insulin IV (recommend 10-15 units Regular insulin IV) | | | |
| | Other: Bolus units of insulin in mL NS | | | |
| Start insulin infusion | Start insulin infusion at _______ units per hour
 - Recommend infusion rate is calculated as: Glucose mg/dL ÷ 100 (Ex: Glucose=350 → Start 3.5 units/h) | | | |

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
Target range for glucose

Rate of glucose reduction not to exceed 100 mg/dL per hour

DKA: 100 to 130 mg/dL
Other:

HHS: Low target:
High target:

Monitor glucose every hour

Obtain lab glucose if fingerstick blood glucose is >450 or <45 mg/dL or SBP <60 mmHg

Change frequency of glucose monitoring to:

Adjust insulin infusion rate

Note: No patient begins on Algorithm 3 or 4 without endocrine service authorization

Start on Algorithm 1

Start on Algorithm 2 (Consider if s/p CABG, transplant, glucocorticoid therapy, >80 U/d insulin)

- Move up or down on the same algorithm each hour if glucose remains outside target range
- Advance one algorithm column (i.e. 1→2, etc.) if glucose is outside the target range at highest infusion rate
- Treat for hypoglycemia if glucose is <60 mg/dL
- Decrease one algorithm column (i.e. 2→1, etc.) if glucose is 60-69 mg/dL x 2 or decreases >60 mg/dL in 1 hour

<table>
<thead>
<tr>
<th>Algorithm 1</th>
<th>Algorithm 2</th>
<th>Algorithm 3</th>
<th>Algorithm 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG units/h</td>
<td>BG units/h</td>
<td>BG units/h</td>
<td>BG units/h</td>
</tr>
<tr>
<td><70 Off</td>
<td><70 Off</td>
<td><70 Off</td>
<td><70 Off</td>
</tr>
<tr>
<td>70–109 0.2</td>
<td>70–109 0.5</td>
<td>70–109 1</td>
<td>70–109 1.5</td>
</tr>
<tr>
<td>110–119 0.5</td>
<td>110–119 1</td>
<td>110–119 2</td>
<td>110–119 3</td>
</tr>
<tr>
<td>120–149 1</td>
<td>120–149 1.5</td>
<td>120–149 3</td>
<td>120–149 5</td>
</tr>
<tr>
<td>150–179 1.5</td>
<td>150–179 2</td>
<td>150–179 4</td>
<td>150–179 7</td>
</tr>
<tr>
<td>240–269 3</td>
<td>240–269 5</td>
<td>240–269 8</td>
<td>240–269 16</td>
</tr>
<tr>
<td>300–329 4</td>
<td>300–329 7</td>
<td>300–329 12</td>
<td>300–329 24</td>
</tr>
<tr>
<td>>360 6</td>
<td>>360 12</td>
<td>>360 16</td>
<td>>360 32</td>
</tr>
</tbody>
</table>

Treat hypoglycemia

1. **Glucose <40 mg/dL:** Give 1 ampule D50W (25 grams) by slow IV push over 30 seconds
 - Decrease insulin infusion by moving down 1 algorithm (i.e. 2→1, etc.)
 - Recheck glucose in 15 minutes; repeat D50W, as above, if necessary

2. **Glucose 40-59 mg/dL:** Give ½ ampule D50W by slow IV push over 30 seconds
 - Recheck glucose in 15 minutes; repeat D50W, as above, if necessary

Maintenance IV fluids

When blood glucose is:

- **DKA:** 200 mg/dL, change IV to D5 ½ NS and run at __________________ mL/hour
- **HHS:** 250 mg/dL, change IV to D5 ½ NS and run at __________________ mL/hour
- **Other:**

 For patients at risk of volume overload, consider D5W or D50W (Infuse D5W via central line using infusion pump)

 Note: HHS: Maintain blood glucose at 250-300 mg/dL until plasma osmolarity is ≤315 mOsm/Kg

Potassium replacement

Call physician if K is <3 or >6 mEq/L (Note: Urine output should be >30 mL/hour before starting K+ replacement)

Add KCl to IV fluids:

- If K is <3.3 mEq/L, add 30 mEq KCl/L of IV fluid
- If K is 3.3- 5.2 mEq/L add 20 mEq KCl/L IV fluid to maintain K between 4-5 mEq/L
- If K+ is >5.2 mEq/L, hold KCl
- Consider KPO4 instead of KCl if serum PO4 is low
- **Other:**
Phosphorus replacement

Consider if evidence of alcohol abuse, malnutrition, etc.

- Give 10 mEq/L KPO₄ in one liter of IV fluid x 1
- Other:

Sodium bicarbonate (DKA)

- Give sodium bicarbonate

 - If pH <6.9 dilute 100 mmol NaHCO₃ in 400 mL H₂O containing 20 mEq KCl
 - Infuse over 2 hours
 - Other

 IV Push ______ ampule of NaHCO₃
 - Recheck arterial pH (ABG) within ______ minutes and call results to the attending

Alert parameters for notifying physician

- Two consecutively treatments for hypoglycemia
- K less than ______ mEq/L
- Withholding IV insulin infusion for >1 hour with no other source of insulin
- TPN stopped, interrupted or any change in formulation
- Deterioration in mental status
- Patient does not respond to above orders for glycemic control
- Other

Transition to SQ insulin

- Proceed to Texas Diabetes Council Transition Algorithm From I.V. to S.Q. Insulin
- Other:

Other orders

1.
2.
3.
4.

References:

GOALS: NPO or PO
FPG 100-130 mg/dL
2h pp <180 mg/dL
AC <140 mg/dL
Avoid hypoglycemia
GOALS: TPN or Enteral
<180 mg/dL
Avoid hypoglycemia

1 Patient will not start eating
Prandial Insulin = None
Basal Insulin = TDD q AM

2 Patient eats <3 meals/day
Each prandial dose = 10% TDD
Basal Insulin: 90% TDD if 1 meal
Basal Insulin: 80% TDD if 2 meals

3 Patient will eat 3x per/day
Prandial Insulin = ½ TDD q.i.d. AC
Basal Insulin = ½ TDD q AM

4 TPN or Enteral Nutrition
TPN: Use R insulin; Dose = 80% TDD
May add part or all to TPN bag
Tube feeding:
Continuous rate
Basal insulin = TDD
Intermittent feedings
Basal insulin = ½ TDD
Prandial insulin = ½ TDD q.i.d. AC

Changing Basal Insulin
Adjust Each Morning
<table>
<thead>
<tr>
<th>FPG</th>
<th>Insulin Change</th>
</tr>
</thead>
<tbody>
<tr>
<td><60 mg/dL</td>
<td>- 4 units</td>
</tr>
<tr>
<td>60-80</td>
<td>- 2</td>
</tr>
<tr>
<td>81-99</td>
<td>- 1</td>
</tr>
<tr>
<td>100-130</td>
<td>No Change</td>
</tr>
<tr>
<td>131-140</td>
<td>+ 2</td>
</tr>
<tr>
<td>141-160</td>
<td>+ 4</td>
</tr>
<tr>
<td>161-180</td>
<td>+ 6</td>
</tr>
<tr>
<td>>180</td>
<td>+ 8</td>
</tr>
</tbody>
</table>

Changing Prandial Insulin
• Add/subtract to prandial dose if glucose is 1/4 before meal
• Use alone to correct any random high glucose

<table>
<thead>
<tr>
<th>FPG</th>
<th>TDD</th>
<th>TDD</th>
<th>TDD</th>
</tr>
</thead>
<tbody>
<tr>
<td><60</td>
<td><40 units/d</td>
<td><40 units/d</td>
<td>>80 units/d</td>
</tr>
<tr>
<td>60-99</td>
<td>-2 unit</td>
<td>-2 unit</td>
<td>-4 unit</td>
</tr>
<tr>
<td>100-139</td>
<td>No Change</td>
<td>No Change</td>
<td></td>
</tr>
<tr>
<td>140-199</td>
<td>+1</td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>200-249</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
</tr>
<tr>
<td>250-299</td>
<td>+3</td>
<td>+5</td>
<td>+7</td>
</tr>
<tr>
<td>300-349</td>
<td>+4</td>
<td>+7</td>
<td>+10</td>
</tr>
<tr>
<td>>349</td>
<td>+5</td>
<td>+8</td>
<td>+12</td>
</tr>
</tbody>
</table>

Footnotes:
1 www.diabetes.org/for-health-professionals-and-scientists/insulin-administration.jsp,
3 Hirsch IB. Insulin. 2006;1(Suppl A):S18-24
4 DeSantis AL, et al. Endocrine Practice. 2006;12:491-505
5 Basal insulin = glargine or detemir
6 If patient is transferred out of the unit in the later evening and will begin eating in the A.M. give half the basal dose and all of the bridging dose. Begin full basal dose the next morning.
7 If NPH is used, then give 2/3 of the TDD and distribute as 2/3 in the morning and 1/3 at bedtime.
8 Aspart, lispro or glulisine is recommended because the action profiles better approximate normal physiology. Regular insulin may be substituted.

Transition From I.V. to S.Q. Insulin
1. Patient's Total Daily Dose (TDD) = Sum of the previous 4 hours x 5
 (This will provide ~80% of the current insulin infusion)
 Note: If patient was nondiabetic and using <1 unit per hour, insulin can be discontinued
2. Give one-time injection of Basal Insulin + Bridging Dose of aspart, lispro or glulisine
 Basal dose = TDD
 Bridge dose = 10% of TDD
3. Stop IV insulin infusion
4. Start patient on pathway 1, 2, 3 or 4 depending on route or number of meals per day

Correcting Hyperglycemia
• Use prandial insulin q4-6 h
• Dose: see "Changing Prandial Insulin"

Reevaluate Total Daily Dose of Insulin
1. Recalculate the TDD every 1-2 days as the doses of insulin are adjusted.
2. The ratio of basal to prandial insulin should be approximately 50:50
Insulin Pump Therapy

Introduction

The goal of insulin delivery is to regulate blood glucose levels to achieve normoglycemia. In someone without diabetes, pancreatic B-cells continuously secrete insulin throughout the day and night, providing a continuous insulin infusion or basal amount. In response to meals, the pancreas provides “bursts” of insulin referred to as boluses.

Pump therapy is intended to more closely mimic this pancreatic function. Continuous subcutaneous insulin infusion (CSII) utilizes only fast acting insulins (Humalog, Novolog) and eliminates the use of long-acting insulins (NPH, Ultralente, Lantus). Pumps can deliver insulin in 0.1 unit increments as a basal/continuous flow between meals and through the night. Basal rates can be increased or decreased at any point, allowing for exercise, illness, skipped meals, sensitivity to insulin and the dawn phenomenon. Boluses of insulin can be delivered via the pump to provide insulin to compensate for carbohydrate intake and hyperglycemic episodes when needed.

Insulin pump therapy gives people with diabetes the freedom to enjoy life, despite their chronic condition. The value of an improved lifestyle, increased flexibility and optimal diabetes control is obvious from the impact the insulin pump has made in the twenty-five years since its inception.

The ability to control how and when insulin is delivered provides the “pumper” with increased flexibility in scheduling their day-to-day activities. For those people with erratic lifestyles, a desire to achieve optimal glycemic control (A1c ≤ 6.5%) and prevent chronic complications, the pump is an ideal choice.

INDICATIONS FOR PUMP THERAPY

Clinical Indications

1. Inadequate glycemic control with MDI (Multiple Daily Injections) therapy
2. Recurrent severe hypoglycemia
3. Recurrent hyperglycemia
4. Hypoglycemia unawareness
5. Dawn phenomenon
6. Preconception
7. Pregnancy
8. Gastroparesis
9. Early neuropathy or nephropathy, when improvement in glucose control can reduce acceleration of complications
10. Renal transplantation
11. Frequent DKA
12. Uncontrolled diabetes
13. Erratic Blood Glucose
14. Prevent or delay complications
15. Desire to improve lifestyle flexibility
16. A1c greater than 6.5%

Lifestyle indications
1. Erratic schedule
2. Varied work shifts
3. Desire for improved flexibility
4. Inconvenience of multiple daily injections

Advantages of Pump Therapy
1. More flexible lifestyle
2. Improved overall control
3. Prevent chronic complications
4. Improved control during exercise and “growth spurts”
5. Tight control during pregnancy

Characteristics of Pump Candidates

Ready, willing, and able
1. Is motivated — pump therapy requires a strong desire to improve one’s health and is a time investment for weeks or months in advance and during the initiation of pump therapy.
2. Has realistic expectations — a potential pump candidate must understand that the pump will not “fix” blood glucose variations automatically, nor will it grant freedom from frequent SMBG (self monitoring of blood glucose).
3. Demonstrates independent diabetes management — a thorough knowledge of diabetes and its management and the ability to demonstrate appropriate self-care behaviors provide the foundation for advanced self-management skills required by pump users.
4. Is practicing counting carbohydrates — has a willingness to practice the Carbohydrate (CHO or carb) Counting method, and an understanding of insulin actions and pre-meal bolus dosing calculations.
5. Has manual dexterity — able to use buttons on the pump and has good visual acuity to see the screen.
6. Has a good support system — emotional support is crucial to the success of pump therapy.
7. Demonstrates emotional stability — a potential pumper must attend education sessions and attend to tasks that require routine attention. The patient must keep physician appointments.

Poor Candidates for Pump Therapy
1. Patients who are unwilling to comply with follow-up appointments.
2. Patients who are unwilling to receive diabetes education.
3. Patients who are unwilling to perform SMBG 8 times a day initially and then, 4-6 times a day after CSII therapy is established.
4. Patients who are unable or unwilling to count carbohydrates.

DETERMINING TOTAL DAILY DOSE AND BASAL RATE

Method #1:
Pre-pump Total Daily Dose (TDD)
Reduce pre-pump Total Daily Dose by 25%
Divide “pump” TDD in half: 50% for basal; 50% for bolus

Method #2:
Using Patients Weight Factor: Weight (lbs) X 0.1 = basal rate per hour
Start with 1 basal rate per 24 hours.
Based on blood glucose results during the times listed below, it may be necessary to implement additional basal rates based on patient’s blood glucose (BG)
- 12:00 midnight – 3:00 a.m.
- 3:00 a.m. – 7:00 a.m.
- 7:00 a.m. – 12:00 noon
- 12:00 noon – 6:00 p.m.
- 6:00 p.m. – 12:00 midnight

Time Frame For Beginning Pump Therapy
1. 1–2 months before pump start:
 - Assess whether or not patient meets the criteria for a “pumper.”
MD writes orders for insulin pump therapy. Contacts the insurance company for pre-authorization of coverage.

Patient is seen by a CDE/dietitian for carbohydrate counting instruction.

Patient is seen by the pump trainer for knowledge assessment and education as needed — to include: hypoglycemia, hyperglycemia and sick day management, prevention of DKA, patient’s responsibilities, and general knowledge regarding diabetes.

2. 1-2 weeks before pump start:
 - Patient watches video/DVD on use of the pump several times to familiarize him/herself with the pump.
 - May attend “pump school” via the Internet if available.
 - Meets with pump trainer for basal rates, boluses, insulin to carbohydrate ratio, and insulin correction factor if not already done.

3. Day before pump start:
 - Discontinue use of long-acting insulin (NPH, Lantus, Ultralente).
 - Continue injecting Novolog or Humalog before meals.
 - Use “correction formula” to cover for “highs.”

4. Day of pump start:
 - Eat breakfast and inject Humalog or Novolog as usual.
 - Wear comfortable, loose-fitting clothing — preferably 2-piece outfit.
 - Allow 3 hours for training.
 - Bring supplies with you to include:
 - Pump, User’s Manual, Infusion Sets — at least 2, Cartridges — at least 2, Skin Prep, Glucose Meter / Lancets / Strips, Alcohol Wipes, Insulin (Novolog or Humalog), Batteries, Carbohydrate Snack.

5. First Day of Pump Therapy:
 - Begin “Four-Day Plan.”
 - Call pump trainer with glucose levels and carbohydrate intake.

6. When “Four-Day Plan” completed:
 - Come into office for first follow-up. Patients MUST bring: documentation of glucose readings, boluses (for elevated glucose or meals), diary of carbohydrate Intake.
 - Begin “Three-Day Plan.”

7. Within 1–2 days after completing “Three-Day Plan”
 - Call pump trainer with readings.
 - Adjust basals/boluses as needed.
8. Weekly for four weeks:
 ◦ Call pump trainer and report complete record.
 ◦ Adjust basals, insulin to carbohydrate ratios as needed.
 ◦ Instruct on added features of the pump, i.e., Dual and Square Wave Boluses, utilizing temporary basal rate, Easy Bolus, Audio Bolus.
 ◦ Adjust basal rates first, based on fasting glucoses. When fasting glucoses are at goal, adjust boluses and/or insulin to carbohydrate ratios to achieve pre- and post-meal glucose goals.

TESTING BASAL RATES: FOUR DAY PLAN

First Day
1. Eat supper by 7 p.m.
2. Skip a bedtime snack.
3. Test blood sugar every 2 hours between supper and bedtime; at 12:00 Midnight, and at 3:00 a.m.
4. Record your results!

Second Day
1. Eat breakfast.
2. Skip lunch.
3. Test blood sugar every 2 hours between breakfast and supper.
4. Record your results!

Third Day
1. Skip breakfast.
2. Test blood sugar every 2 hours between waking up until lunch.
3. DO NOT SLEEP IN!
4. Record your results!

Fourth Day
1. Skip supper.
2. Test blood sugar every 2 hours between lunch and your bedtime snack at 10:00 p.m.
3. Record your results!

NOTE: Do not “fix” a high blood sugar during the time you are checking every 2 hours. Correct at your next scheduled meal using your correction factor.

If you miss a day, continue the plan the next day. But try not to miss a day — the sooner the plan is completed, the sooner your basal rates will be set.
Pre-Pump Education Checklist

Patient Name __________________________ **Date** ______________________

Certified Pump Trainer __

MD’s Name __

Pump Model __________________________ **Serial #** ______________________

Understanding Pump Therapy
- [] Theory
- [] Insulin Type
- [] Basal Rate
- [] Meal Bolus
- [] Insulin Sensitivity/Correction Factor

Nutrition
- [] Carb. Counting
- [] Using Food Labels
- [] Insulin to Carb. Ratio
- [] Proper Snacks

Blood Glucose Testing
- [] Schedule
- [] Alc
- □ Safety
- □ Hypoglycemia
- □ BG Checks

Exercise
- [] Proper Snacks

Hypoglycemia
- [] Protocol/”Rule of Fifteen
- [] Glucagon
- □ User’s Guide
- □ Pump School Online
- □ Websites

Hyperglycemia
- [] Protocol
- [] Ketone Testing
- □ Causes
- □ Signs and Symptoms
- □ Prevention

DKA
- □ Protocol
- □ Supplies

Sick Day Management

Notes:

__

<table>
<thead>
<tr>
<th>Patient Name</th>
<th>Date</th>
<th>Certified Pump Trainer</th>
<th>MD’s Name</th>
<th>Pump Model</th>
<th>Serial #</th>
</tr>
</thead>
</table>

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
DETERMINING BOLUSES

Calculating Insulin Sensitivity Factor (ISF)
Also may be referred to as the Insulin Correction Factor (ICF)
The Insulin Sensitivity Factor (ISF) is the amount of blood glucose reduced by 1 unit of rapid or short acting insulin over a 2–4 hour period. Two commonly accepted formulas are used to determine the ISF: the 1800 Rule and the 1500 Rule. Endocrinologist Paul C. Davidson, MD developed the 1500 Rule. With the introduction of rapid-acting insulin, John Walsh, PA CDE modified the 1500 Rule into the 1800 Rule. Generally, the 1800 Rule is used for patients who are insulin sensitive or those who use rapid-acting insulin and the 1500 Rule for patients who are insulin resistant or those who use short-acting insulin. The Rules calculate the ISF by dividing either 1800 or 1500 by the TDD.

\[
\text{Amount of Blood Glucose lowered by 1 unit of insulin (1800 Rule)} = \frac{1800}{\text{TDD}}
\]

Note: 1800 currently used with Humalog or Novolog instead of 1500 (1500 Rule)

Calculating Insulin to Carb Ratio (ICR)
This method of determining the Insulin:Carbohydrate ratio is based on Total Daily Insulin Dose (TDD). The TDD is divided into 500 and the result is the amount of carbohydrate that one unit of rapid- or short-acting insulin will cover. The goal is to bring blood glucose levels into the target range 3–4 hours after the meal.

\[
\text{Grams of carbs covered by 1 unit of insulin (500 Rule)} = \frac{500}{\text{TDD}}
\]

TYPES OF BOLUSES

Normal Bolus—total bolus infused at onset of meal
Square Wave—total bolus infused slowly over several hours; useful in cases of gastroparesis
Dual Wave—part of bolus is infused at onset of meal, and remainder is infused slowly over several hours; useful for high fat meal, i.e., pizza, Mexican food.

Adjusting/Fine Tuning Dosage
Empower patients to evaluate and adjust their BG. Resume intensive monitoring if necessary, i.e., 8 times a day. Start with overnight basals; promote low-fat, consistent carb content meals. Introduce high fat meals after ICR has been established or corrected. When high fat meals are consumed, consider utilizing Dual Wave bolus. Two-hour postprandial glucose goals should be 30 +/- points above preprandial BG. Patient may require a different ICR for each meal. BG targets should be determined by the provider and the patient and depending on age of the patient, concomitant
conditions and the patients’ ability and willingness to achieve tight control of their diabetes.

POSSIBLE COMPLICATIONS OF PUMP THERAPY

Hypoglycemia — fewer episodes than with MDI. Possible improvement in hypoglycemic unawareness.

Diabetic Ketoacidosis — interruption in Humalog/Novolog delivery can lead to high BG and DKA in 4 +/- hours. Patient must check BG 4–6 times a day.

Skin Infections — meticulous skin care is necessary at infusion sites, which must be rotated every 2–3 days.

Weight Gain — could be a result of improved control or if patient liberalizes diet.

Initiation of CSII should be done by a Certified Pump Trainer (CPT) who is usually provided by the insulin pump manufacturer, or a Certified Diabetes Educator (CDE), who has received specialized training in insulin pump therapy. The various features of the pump should be demonstrated/explained to the patient who should be provided with phone numbers of the insulin pump company and the provider. The patient should be encouraged to keep detailed records of BG, insulin dosage, carb intake, and other daily activities.

Table for Estimated Basal Rate and Insulin to Carbohydrate Ratio

<table>
<thead>
<tr>
<th>WEIGHT IN POUNDS</th>
<th>BASAL INSULIN</th>
<th>CARBOHYDRATE RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.3 to 0.5</td>
<td>1 unit / 16 gms</td>
</tr>
<tr>
<td>110</td>
<td>0.3 to 0.5</td>
<td>1 unit / 15 gms</td>
</tr>
<tr>
<td>120</td>
<td>0.4 to 0.6</td>
<td>1 unit / 15 gms</td>
</tr>
<tr>
<td>130</td>
<td>0.4 to 0.6</td>
<td>1 unit / 14 gms</td>
</tr>
<tr>
<td>140</td>
<td>0.5 to 0.7</td>
<td>1 unit / 13 gms</td>
</tr>
<tr>
<td>150</td>
<td>0.5 to 0.7</td>
<td>1 unit / 12 gms</td>
</tr>
<tr>
<td>160</td>
<td>0.6 to 0.8</td>
<td>1 unit / 12 gms</td>
</tr>
<tr>
<td>170</td>
<td>0.6 to 0.8</td>
<td>1 unit / 11 gms</td>
</tr>
<tr>
<td>180</td>
<td>0.7 to 0.9</td>
<td>1 unit / 10 gms</td>
</tr>
<tr>
<td>190</td>
<td>0.8 to 1.0</td>
<td>1 unit / 9 gms</td>
</tr>
<tr>
<td>200</td>
<td>0.9 to 1.1</td>
<td>1 unit / 8 gms</td>
</tr>
</tbody>
</table>
Estimated Correction Factor

<table>
<thead>
<tr>
<th>CURRENT TDD</th>
<th>CORRECTION FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 units</td>
<td>150 points</td>
</tr>
<tr>
<td>20 units</td>
<td>75 points</td>
</tr>
<tr>
<td>25 units</td>
<td>60 points</td>
</tr>
<tr>
<td>30 units</td>
<td>50 points</td>
</tr>
<tr>
<td>40 units</td>
<td>38 points</td>
</tr>
<tr>
<td>50 units</td>
<td>30 points</td>
</tr>
<tr>
<td>60 units</td>
<td>25 points</td>
</tr>
<tr>
<td>75 units</td>
<td>20 points</td>
</tr>
<tr>
<td>100 units</td>
<td>15 points</td>
</tr>
<tr>
<td>150 units</td>
<td>10 points</td>
</tr>
</tbody>
</table>

Carbohydrate Counting

Carbohydrate counting is a meal planning approach that works well with insulin pump therapy. It is a great way to add variety and flexibility in choices of meals and snacks. Carbohydrate counting has been proven to help achieve better glucose control.

Generally carbohydrate is the main food group that increases blood sugar. Protein has a sustaining effect and fat slows absorption.

It is essential that the patient understands and practices the techniques of carbohydrate counting prior to pump initiation.

Many references such as the materials included in Chapter 5 of Diabetes Life Skills Book or the “Daily Meal Planning Guide” by Eli Lilly are used by the CDE or Registered Dietitian to teach Carbohydrate Counting.

Tools needed to count carbs:

1. Measuring cups
2. Food labels
3. Calculator

Carbohydrate containing foods include breads, pasta, rice, other grains, starchy vegetables (potatoes, corn, peas), crackers, cereals, fruit (fresh, canned, frozen, or juice), milk, yogurt & ice cream, cooked dried beans, cake, cookies, pie, sugar/honey.

One serving is considered 15 grams of carbohydrate and is contained in:

1/3 cup cooked rice, beans, or pasta
1/2 cup starchy vegetables like corn, peas, potato, or cooked cereal
1 slice bread or 1 tortilla
1 small piece of fruit, ½ small banana, or ½ cup light canned fruit
1 cup milk
Using measuring cups and reading labels are highly recommended as the patient practices at home.

THE RULE OF 500

This method of determining the Insulin:Carbohydrate ratio is based on Total Daily Insulin Dose (TDD). The TDD is divided into 500 and the result is the amount of carbohydrate that one unit of rapid- or short-acting insulin will cover. The goal is to bring blood glucose levels into the target range 3–4 hours after the meal.

Example:

TDD is 36 units
Glucose levels are within target range
500/36 = 13.8 (round up to 14 or 15)
Insulin to carbohydrate ratio is 1:15
1 unit of insulin covers 15 gm carbohydrate

Some CDEs find that dividing 450 (rather than 500) by the TDD is more accurate for short-acting insulin and/or for people who are more insulin resistant.

Insulin Sensitivity

The Insulin Sensitivity Factor (ISF) is the amount of blood glucose reduced by 1 unit of rapid or short acting insulin over a 2–4 hour period. Two commonly accepted formulas are used to determine the ISF: the 1800 Rule and the 1500 Rule. Endocrinologist Paul C. Davidson, MD developed the 1500 Rule. With the introduction of rapid-acting insulin, John Walsh, PA CDE modified the 1500 Rule into the 1800 Rule. Generally, the 1800 Rule is used for patients who are insulin sensitive or those who use rapid-acting insulin and the 1500 Rule for patients who are insulin resistant or those who use short-acting insulin. The Rules calculate the ISF by dividing either 1800 or 1500 by the TDD.

Example:

TDD is 34 units
1800/34 = 52.9
ISF is 52.9. One unit of rapid-acting insulin decreases glucose by 52.9 mg/dL
This can be rounded to 55

Another method of calculating the ISF is to use the general “safe” starting point of 1 unit: 50 mg/dL. This method may work well with most lean to average adults.
An alternative method for Insulin:Carb ratio can be figured once the person’s ISF is calculated, multiplying it by 0.33 provides an insulin-to-carbohydrate ratio.

Example:

ISF is 55 mg/dL
55 x 0.33 = 18.15 (round to 18)
Insulin to carb ratio is 1:18
1 unit of insulin covers 18 g of carbohydrate

Verifying Insulin:Carb Ratio and Insulin Sensitivity

Prior to eating, the bolus insulin dose is partially based on the insulin to carbohydrate ratio. This ratio tells how many grams of carbohydrate are affected by one unit of insulin. The ratios can be verified with one of the methods described below:

Method 1: Food diary, insulin dose, and SMBG information

The pump user is to keep 3 days of records, including:

1. Fasting, pre-meal, and 2-hour PPG results
2. Pre-meal insulin doses
3. Amount of carbohydrate consumed at meals and other times. It is helpful if the patient consumes the same amount of carbohydrate at each breakfast for 3 days, same amount of carbohydrate at each lunch for 3 days, etc.
4. Amount of all food and beverage consumed, as fat and protein moderately affect blood sugar.

With these records, determine the amount of insulin the patient used to cover the carbohydrate consumed at each meal by dividing the total grams of carbohydrate by the number of units of insulin.

Example:

Consumed 60 g carbohydrate
Injected (bolused) 5 u rapid-acting insulin
PPG is within 30 mg increase of pre-meal blood glucose
60/5 = 12
Insulin to carbohydrate ratio = 1:12
1 unit of insulin covers 12 g carbohydrate
CARBOHYDRATE COUNTING FOOD LOG

Write down all food or drink you consume for at least 3 days. Be sure to include portion sizes and the time you eat or drink. Estimate the amount of carbohydrates in each meal and snack; then record the amount of insulin you took. Bring this log with you on appointments to the pump trainer or the dietician.

<table>
<thead>
<tr>
<th>DATE/TIME</th>
<th>BLOOD SUGAR (2 HRS PP)</th>
<th>FOOD</th>
<th>GRAMS OF CARBS</th>
<th>INSULIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calculating Total Grams of Carbohydrate in a Recipe

To determine the amount of carbohydrates in a recipe:

1. Make a table as noted below
2. List ALL the ingredients in the recipe
3. Using food labels or a nutrient composition book, list the total grams of carbohydrate in each ingredient (amount of fat and sodium can also be calculated)
4. Total the grams of carbohydrate from all ingredients
5. Divide the total grams of carbohydrate by the number of servings in the recipe
6. Note the total grams of carbohydrate PER SERVING on the recipe for future reference

Recipe Name: __

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
<th>Grams of Carbohydrate</th>
<th>Grams of Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornstarch</td>
<td>2 Tablespoons</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Egg Substitute</td>
<td>½ cup</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Sugar</td>
<td>½ cup</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Creamed Corn</td>
<td>16 oz. can</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Evaporated Skim Milk</td>
<td>16 oz. can</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>236</td>
<td>0</td>
</tr>
</tbody>
</table>

Divide total carbohydrate by number of servings (236/8) 45

This recipe has 29.5 grams of carbohydrate and zero (0) grams of fat per serving.
IDENTIFYING AND MANAGING HYPERGLYCEMIA

Sick Day Management (Refer to “Sick Day Guidelines” in TDC Tool Kit)

During periods of illness, it may be more difficult to maintain good control of blood glucose. Examples of illness or “sick days” include: dental surgery, colds, sore throat, mild infections, nausea, vomiting, diarrhea, or fever. It is important to monitor blood glucose more frequently during a sick day and to take immediate action to prevent ketoacidosis.

Guidelines to follow:

Medication

Never omit insulin. Even if unable to eat, insulin need continues and may increase.

Continue the basal dose of insulin and make additional corrections using the Correction/Sensitivity Factor as needed. Urine ketone testing can further guide the correction doses.

Blood/Urine Testing

Check blood glucose before usual mealtimes and every 2 to 4 hours, keeping a written record of results.

Check urine for ketones if blood glucose is greater than 250 mg/dL or as directed by the physician.

Fluids/Meal Planning

Consuming adequate fluids is important during illness. Drink fluids every hour while awake and during blood glucose checks at night.

If able to eat, drink non-caloric beverages.
If unable to eat, alternate non-caloric beverages with those containing carbohydrate.

Consume 10–15 grams of carbohydrate every 1–2 hours.

Severe high blood glucose and ketoacidosis (DKA) are serious medical problems that sometimes occur in diabetes. High blood glucose can exist for some time without triggering ketoacidosis. Ketoacidosis begins only after insulin levels in the body go very low. When insulin is low, glucose cannot be used as fuel. Glucose is the body’s first choice for energy, but if not available due to inadequate insulin levels, the body must start burning fat even though glucose is high in the blood. Ketones are the by-product of burning fat for energy and in high levels, cause nausea and vomiting. Vomiting, in combination with high blood sugars, can lead to dehydration.

Ketoacidosis can be triggered by:

1. Illness
2. Infections
3. Pump Malfunction
 · Loose Luer-lock connection
Diabetes treatment algorithms

- Dislodged infusion set
- Site irritation or overuse
- Empty pump reservoir/cartridge
- Expired insulin
- Incorrect bolus calculation
- Missed bolus doses
- Inadequately programmed basal rates

A pump user needs to take a correction dosage using a syringe if spilling moderate to large ketones, then change the infusion set. Plenty of water should be consumed to help flush ketones from the body.

Call a physician for further instruction.

IDENTIFYING AND MANAGING HYPOGLYCEMIA

Causes:
Glucose levels can drop to dangerously low levels if there is not a balance between food, medication, and activity. It can occur very quickly and without warning. Not eating properly, delaying or skipping meals, an error in medication dose, or engaging in exercise that is too difficult or too strenuous are all causes of hypoglycemia.

Signs and Symptoms:

<table>
<thead>
<tr>
<th>Shaking</th>
<th>Sweating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness</td>
<td>Anxiety</td>
</tr>
<tr>
<td>Headache</td>
<td>Blurred vision</td>
</tr>
<tr>
<td>Dizziness</td>
<td>Fast heartbeat</td>
</tr>
<tr>
<td>Irritability</td>
<td>Fatigue</td>
</tr>
</tbody>
</table>

“Rule of 15”

1. Immediately stop activity and check glucose levels. If driving, immediately pull off the road
2. If no glucose meter is available, treat regardless
3. Consume 15 gms of a fast-acting carbohydrate

- ½ cup juice
- 6–7 lifesavers
- 2 tsp. sugar
- 5 sugar cubes
- ½ cup regular soda
- 8–9 jellybeans
- 4 glucose tablets
- 8 oz. skim milk
- 1 tube glucose gel
4. Rest for 15–20 minutes

5. Retest glucose — if still below 70 mg/dl, repeat fast-acting carbohydrate. Or if no glucose meter is available, and symptoms are still present, repeat fast-acting carbohydrate

6. Continue steps 1 – 5 until glucose level is above 70 mg/dl

7. An extra snack consisting of a carbohydrate and protein may be needed if more than one treatment was required and no meal will be eaten within a half-hour. Examples are:
 - ½ sandwich
 - Cheese and crackers
 - Peanut butter and crackers

8. If several hypoglycemic episodes occur at the same time over a few days, the basal rate will need to be adjusted; notify the pump trainer immediately

9. ALWAYS carry a fast-acting carbohydrate in a place that is easily accessible

10. ALWAYS wear identification stating that you have diabetes and are being treated with an insulin pump
APPENDIX

PHYSICIAN’S ORDERS FOR INSULIN PUMP START

Patient Name __ Date ___________________

Certified Pump Trainer __

These orders expire on __

Basal rates may be adjusted by 0.05 increments for BG above _________ and/or _________ below.

Starting Basal Rate:

<table>
<thead>
<tr>
<th>Profile</th>
<th>Time</th>
<th>Units per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>12:00 a.m.</td>
<td></td>
</tr>
</tbody>
</table>

Starting Bolus Doses

Insulin to Carbohydrate Ratio: 1 unit per ___________ gms. carbohydrate

Insulin Sensitivity Ratio
(Correction Factor): 1 unit of insulin will lower BG by _______ mg/dl

Target Blood Glucose Levels

3:00 A.M. _________ to _________

Fasting. _________ to _________

Before meals. _________ to _________

After meals. _________ to _________

Additional Instructions:___

Physician’s Signature ___
PATIENT INSULIN PUMP CONTRACT

Patient Name __ Date __________________

Physician __

I understand, as the patient, it is my responsibility to:

1. Maintain open communication with my physician, dietitian, and diabetes educator. This will include recording and reporting my glucose levels, carbohydrate intake, exercise, boluses, basal rate changes, and other information requested.

2. Perform glucose testing as requested.

3. I will change my infusion set every 2 to 3 days and follow the guidelines as set forth for proper pump management.

4. If hospitalized, I will bring all the needed equipment from home to ensure I have enough supplies. If I do not have the supplies, it is my responsibility to make arrangements to obtain them.

5. I will follow the formulas for meal boluses and correction factors prescribed to me by my physician and/or diabetes educator.

6. I will respond quickly and correctly to hypoglycemia and will report these to my health care team. I understand the “Rule of 15” to treat a low glucose with 15 grams of a fast-acting carbohydrate, retest in 15 minutes, and repeat the sequence if necessary.

7. I will respond quickly to hyperglycemia and prevent DKA by following the rules for sick-day management using my correction factor. I will report to my diabetes care team as needed, increase the frequency of monitoring, and test my urine for ketones if my glucose is over 240 mg/dl for 2 consecutive glucose readings.

8. I will not disconnect from the pump for longer than an hour. If I desire a “vacation” from the pump, I will first discuss this with my diabetes care team before doing so and follow their recommendations.

9. If I am having any difficulty with either pump use or carbohydrate counting, I will immediately call my diabetes care team for the proper assistance.

10. I will make sure that I have the proper supplies on hand at all times and that it is my responsibility to reorder supplies as I need them. I will also carry “emergency supplies” with me at all times, including syringes, in case my site becomes dislodged. I will also wear identification stating that I have diabetes and wear an insulin pump. This information will also include emergency contact, my doctor’s name, and telephone number.

Patient’s Signature __ Date __________________
LETTER OF MEDICAL NECESSITY

Date ________________________________

RE: Patient Name ________________________________ Phone () ____________________

Patient’s date of birth ___________________ Insurance identification # ____________________

To whom this may concern:

This letter serves as prescription and letter of medical necessity for the above referenced patient for an insulin infusion pump as a lifetime need.

Check the following:

☐ Patient has had diabetes for ____ years

☐ Patient has the ability to regularly monitor blood glucose ____ to ____ times per day.

☐ Patient is motivated to achieve and maintain glycemic control and has the support needed to stay motivated.

☐ Patient demonstrates compliance with dietary regimen.

☐ Patient’s insulin regimen consists of _____ to _____ injections per day.

☐ Patient has attempted several different regimens and/or has had multiple dose changes.

☐ Patient uses the following type(s) of insulin: ___.

Patient exhibits one or more of the following:

☐ A1c level ___% on ___/___/____.

☐ History of severe glycemic excursions and/or ☐ Nocturnal Hypoglycemia

☐ Hypoglycemia unawareness ☐ Extreme insulin sensitivity or low insulin req.

☐ Widely fluctuating blood glucose levels before meals. (e.g., pre-prandial BG levels commonly exceed 140 mg/dl and/or are below 70 mg/dl. The range of these blood glucose levels is from _____ to _____.

☐ Dawn Phenomenon where fasting blood glucose often exceeds _____ mg/dl.

☐ Day to day schedule variations such as meal times, work schedules or activity level confound the degree of regimentation required to self manage glycemia with Multiple daily injections.

☐ Patient has been hospitalized or needed emergency assistance due to his/her diabetes.

☐ Patient has frequent hypoglycemic episodes, up to _____ times per week.

☐ Pregnancy or preconception with a history of poor glycemic control.

☐ Secondary complications requiring tighter glycemic control to slow or stop progression of

☐ Retinopathy ☐ Neuropathy ☐ Nephropathy ☐ Other: ________________________

☐ Sub-optimal glycemic and metabolic control post-renal transplant.

☐ Patient has been fully informed of the risks and benefits of pump therapy.
PHYSICIAN NOTES

I certify that this information is complete and correct. __

I am an endocrinologist, internist or diabetes specialist: □ Yes □ No

I am prescribing an insulin infusion pump, insulin pump supplies, and diabetes supplies for the following patient. The supplies may be refilled as necessary for one year. Please dispense as written.

__

PHYSICIAN NAME

PATIENT NAME

__

PHYSICIAN STREET

PATIENT STREET

__

PHYSICIAN CITY, STATE, ZIP

PATIENT CITY, STATE, ZIP

__

PHYSICIAN SIGNATURE

DATE

__

MEDICAL LICENSE NUMBER

__

UPIN NUMBER

__

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
INSURANCE COVERAGE FOR INSULIN PUMP THERAPY

Private Insurance
1. Contact pump company with information about the patient
 A. Insurance information
 B. Indications that would require utilizing the insulin pump
 C. Must be on multiple insulin injections (2 or more a day)
 D. Cover type 1 and some type 2 diabetes
 E. Prescription from MD

Medicare
1. Contact pump company with patient’s information
2. Must meet criteria for insulin pump therapy
 A. C-Peptide of less than 0.6 mcg/L
 B. A1c over 7%
 C. Monitoring 4 times a day
3. Medicare pays 80% for pump and supplies. Secondary insurance may cover the other 20%. If Medicare denies coverage, secondary may cover.

Medicaid
1. Contact pump company with insurance information
2. Must meet criteria for insulin pump therapy
2. Prescription from MD
4. Medicaid will cover 100%

Indications for Insulin Pump Therapy
1. Unable to normalize glucose levels
 A. Erratic glucose excursions
 B. A1c over 7%
2. Severe episodes of hypoglycemia or hypoglycemia unawareness
3. Preconception/pregnancy
4. Early chronic complications
5. Organ transplant
6. Patient desires better control
7. Prevent chronic complications
OVERVIEW FOR PUMPING INSULIN

Indications For Insulin Pump
1. Multiple episodes of severe hypoglycemia
2. Erratic glucose levels – “brittle diabetes”
3. Early complications
4. Organ transplant
5. Pregnancy

Advantages of The Pump
1. More flexible lifestyle
2. Improved overall control
3. Prevent chronic complications
4. Improve control during exercise and “growth spurts”
5. Tight control during pregnancy

Characteristics of Pump Candidate
1. Must be willing to monitor BG several times a day
2. Must be willing to count carbohydrates
3. Must have manual dexterity to use buttons on pump and have good visual acuity to see the screen
4. Good support system
5. Committed to self-care
6. Ability to problem solve
7. Good basic knowledge of diabetes
8. Reasonable expectations of what the pump can do

Time Line
1–2 months before pump start:
1. Assess patient’s current knowledge about diabetes
2. Assess whether or not patient meets the criteria for a “pumper”
3. MD contacts the pump company and writes orders for the pump
4. Patient is seen by dietitian for carbohydrate counting
5. Patient is seen by the pump trainer for general assessment and education
QUESTIONNAIRE

Are you ready for pumping?

1. How motivated are you to achieve good control?
 Not very 0 1 2 3 4 5 very

2. How many times do you test every day?
 0 1 2 3 4 5

3. How many injections per day?
 0 1 2 3 4 5

4. Do you keep a record?
 Yes (5 points) No (0 points)

5. Do you adjust your insulin for test results?
 Yes (5 points) No (0 points)

6. Do you adjust your insulin for meals?
 Yes (5 points) No (0 points)

7. Do you adjust insulin for “highs”?
 Yes (5 points) No (0 points)

8. Do you adjust your insulin for exercise?
 Yes (5 points) No (0 points)

9. Do you get regular A1c tests?
 Yes (5 points) No (0 points)

10. Do you call your doctor when you have a problem?
 Yes (5 points) No (0 points)
SCORING

<table>
<thead>
<tr>
<th>Score</th>
<th>What It Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–9</td>
<td>Are you in charge or someone else?</td>
</tr>
<tr>
<td>10–19</td>
<td>At least you’re honest!</td>
</tr>
<tr>
<td>20–29</td>
<td>Where can you improve?</td>
</tr>
<tr>
<td>30–39</td>
<td>Just a few minor changes</td>
</tr>
<tr>
<td>40–49</td>
<td>How soon can you start?</td>
</tr>
</tbody>
</table>

1–2 weeks before pump start

1. Patient watches video or DVD on pump use several times to begin familiarizing him/herself with the pump
2. May attend “Pump School” via Internet
3. Meets with pump trainer for basal, bolus, correction factor, and insulin to CHO ratio

Day before pump start

1. Discontinue use of long-acting insulin
2. Continue injections of Humalog/Novolog before meals
3. Use “correction formula” to cover for highs

Day of pump start

1. Eat breakfast and take fast-acting insulin as usual
2. Wear comfortable clothing-preferably two-piece outfits
3. Allow 3 hours for training
4. Bring with you:
 - Pump
 - User’s Manual
 - Infusion sets — at least 2
 - Cartridges — at least 2
 - Skin prep
 - Glucose meter/strips/lancets
 - Alcohol wipes
 - Insulin (Novolog or Humalog)
 - Carbohydrate snack
 - 2 Batteries
First day after beginning pump therapy
1. Call Pump Trainer with glucose readings and grams of carbohydrate
2. Begin “4 Day Plan”

Within 3–5 days after pump training
1. Come in to office for follow-up
2. Continue “4 Day Plan” until basal rates are adjusted correctly

When basal rates correct,
1. Adjust insulin to carb ratio
2. Begin “3 Day Plan”
3. Call Pump Trainer with BG readings and CHO grams

Weekly for 4 weeks
1. Call Pump Trainer with BG’s and CHO grams for adjustment
2. Basals are adjusted first, then boluses

STARTING BEGINNING BASAL RATE

Total Daily Pre-pump Insulin x 75% = Total Daily Insulin per Pump
(total pre-pump dose minus 25%)

Divide the new dose by 2
Half is basal; half is boluses

For basal, divide half by 24 = basal rate per hour

Begin with 1 basal rate and adjust as needed

Example:
TDD pre-pump — 50 units
50 – 25% = 38 — new dose
38 ÷ 2 = 19 (19 units for boluses; 19 units for basal)
19 ÷ 24 = 0.79 units per hour (may round up to 0.8 units per hr.)
INSULIN TO CHO RATIO: RULE OF 500

Divide 500 by the new total daily dose:

Example:

TDD = 25 units

500 ÷ 25 = 20 — 1 unit of insulin per 20 gms of CHO

TDD = 45

500 ÷ 45 = 11 — 1 unit of insulin per 11 gms of CHO (may round down to 10 for ease)

INSULIN CORRECTION FACTOR: RULE OF 1500

Divide new TDD into 1500

Example:

TDD = 45 units

1500 ÷ 45 = 33 (amount I unit of insulin will decrease glucose level by)

If target level is 100 and glucose level 289 mg/dL – how many units to get BG level to 100?

289 – 100 = 189 (189 points above target)

189 ÷ 33 = 5.7 units of insulin

Used to correct for a high

May be added to regular mealtime bolus if high occurs right before eating a meal

MONITORING SCHEDULE

For first few days to 2 weeks (or until basals and boluses adjusted)

1. Between 2:00–3 a.m. (Dawn Phenomenon)
2. Fasting (overnight basal) Goal 70 – 100 mg/dL
3. 2 hours after each meal Goal 140 mg/dL or less
4. Before and after exercise
5. Before driving
6. If hypoglycemia is suspected

ADJUSTING BASALS – “4 DAY PLAN”

Overnight Basal

1. First basal to be checked
2. Eat regular dinner (no later than 7:00 p.m.), NO bedtime snack
3. BG @ bedtime should be 100-150 mg/dL
4. Test BG every 2 hours between supper and bedtime, @ Midnight, and 3:00 a.m.
5. If BGs stay within 30 mg/dl basal OK — if more than 30, adjust
6. Divide night into 3 “test windows”
 a. BEDTIME: 9:00 P.M. to midnight
 b. NIGHT: Midnight to 3:00 a.m.
 c. DAWN: 3:00 a.m. to 7:00 a.m.

Afternoon Basal
1. Eat breakfast and take bolus for food
2. NO lunch, NO bolus
3. Check BG every 2 hours between breakfast to supper
4. If BGs stay within 30 mg/dl, basal OK; if not, adjust

Morning Basal
1. NO breakfast, NO bolus
2. Test BG every 2 hrs from waking until lunch. DO NOT SLEEP IN!
3. If BGs stay within 30 mg/dl, basal OK; if not, adjust

Evening Basal
1. NO supper NO bolus
2. Test BG every 2 hrs between lunch & bedtime snack at 10:00 p.m.
3. If BGs stay within 30 mg/dl, basal OK; if not, adjust

NOTE — DO NOT “fix” a high glucose during the time you are checking your BGs every 2 hours. Correct at the next scheduled meal, using your correction factor. If you miss a day — continue the plan the next day. May need to repeat the “4 Day Plan” two or three times until the basal rates are corrected.

ADJUSTING INSULIN TO CHO RATIO
1. Check 2 hours after each meal
2. If BGs not over 140 mg/dL, ratio correct; if higher — increase, if lower — decrease
3. May have 2-3 different ratios during the day — may need 1 unit per 8 gms in a.m., 1 unit per 10 or 15 for lunch and dinner, or 1 per 8 in a.m., 1 per 10 for lunch, and 1 per 15 for dinner.
ADJUSTING CORRECTION FACTOR

1. If hypoglycemia occurs after correcting for a high, lower correction factor
2. If BG still high after 3–4 hours, increase factor.

OTHER TIPS AND SAFETY

1. Change site every 2–3 days (every other day with pregnancy). ALWAYS do site changes in the MORNING — NEVER at bedtime! Check BG 2 hours after a site change to ensure the “cath” is placed correctly and pump is functioning properly
2. Inspect site twice a day — if swelling, redness, pain, or drainage — CHANGE SITE!
3. ALWAYS carry extra supplies with you in case the catheter gets dislodged
4. ALWAYS have a supply of syringes on hand in case of pump malfunction
5. ALWAYS wear identification stating you have Diabetes and wear an insulin pump
6. If you have 2 BGs over 240 mg/dL in a row — inject insulin according to the correction factor and CHANGE SITE. Retest 2 hours after
7. NEVER NEVER NEVER go to bed with a low battery
8. If you perspire heavily, may use a solid non-fragrance antiperspirant around site or try other types of tape that are available. Skin Tac “H”, Polyskin, Tegaderm, Hypafix, HyTape, Dermicell, SkinPrep, Mastasol, and toupee glue are other options to try.

GOING OFF THE PUMP

1. Be sure you check with your doctor before disconnecting from the pump for any length of time.
2. DO NOT disconnect for more than 1-2 hours unless you have the OK from MD.
3. Reasons to go off the pump may be due to pump malfunction — call 1-800-send pump — the pump manufacturer will immediately send a loan pump until yours is repaired or replaced. Another reason may be just a desire to have a “vacation” from the pump.

<table>
<thead>
<tr>
<th>Time Off Pump</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–1½ hrs</td>
<td>No action unless CHO will be eaten or BG is high</td>
</tr>
<tr>
<td>1½–5 hrs.</td>
<td>Before disconnecting, give a bolus to replace 80% of the basal that will be lost. Inject before eating using insulin to CHO Ratio</td>
</tr>
<tr>
<td>DAYTIME ONLY</td>
<td>Give injection before each meal by using your insulin to CHO ratio PLUS the basal insulin needed until the next meal</td>
</tr>
<tr>
<td>3–4 Days or More</td>
<td>Inject fast-acting insulin before each meal using your insulin to CHO ratio and correction factor for highs. At bedtime, inject Lantus to equal 1.5 X the basal rate used for the overnight period.</td>
</tr>
</tbody>
</table>
TRAVELING

1. ALWAYS carry at least 1 weeks’ worth of extra supplies on top of what you will normally use — if you are staying for 2 weeks, carry supplies for 3 weeks.
2. NEVER check your supplies in baggage — CARRY them with you.
3. Carry snacks with you.
4. WEAR IDENTIFICATION stating you have diabetes and wear an insulin pump.
5. Remember to change the time on your pump if you will be crossing time zones.
6. Get a letter from your doctor explaining what to do for your diabetes, listing medications and devices that you may use. The letter should also state any food or medication allergies you may have. Also get a prescription to carry with you for any medications you may need. Know the name and number of an endocrinologist in the area where you’re traveling may prove useful.
7. Carry bottles of insulin IN THEIR BOXES with your name, doctor’s name, your pharmacy’s name, and medication on a pre-printed label.
8. Contact your airline for any specifics — different airlines have different rules regarding diabetes supplies — don’t be surprised!
9. The pump can be worn through the scanner at the airport without causing it harm. Don’t call attention to it.

HOSPITALIZATIONS

1. Remove pump for X-rays, MRIs.
2. Be prepared beforehand — carry a letter from your endocrinologist with orders for you to keep the pump on, check your own glucose levels and do your own adjustments.
3. If you are unable to care for the pump, have a family member do so. If you have no family with you, the pump may be removed, but ONLY after the nurses have orders for insulin coverage. DKA can occur much faster after disconnecting from the pump because there is no long-acting insulin on board.
4. The pump gives better control during and after surgery, so ask doctors to allow that it stay connected. As soon as possible after surgery, ask to have the pump reconnected if it was discontinued during the surgery.
5. Pregnant patients will need to move insertion site to the thigh area immediately after beginning labor and leave the pump connected during labor. Insulin resistance dramatically decreases after the placenta is delivered — so be prepared to decrease basal rates. Basal rates will remain lower if the mother is breast feeding also.
Insulin Pump Education: Up to 8 Visits

A. Initial visit/s prior to pump start, CDE:
 1. Data collection & review; assessment of self-management skills, readiness to learn and barriers to learning
 2. Prerequisites for successful pumping:
 a. One month of multiple injection therapy with Lantus and Humalog or Novolog
 b. Many BGs showing testing at least 4 times a day for one month
 c. Knowledge of pump function through watching video or doing on online pump program
 3. Intro to pumps; basal & bolus rates, insertion sites
 4. Refer to RD for dietary counseling and CHO counting assessment
 5. Assess glucose meter skills
 6. Resources: videos, books, pamphlets, web sites
 7. Goal setting

B. Initial visit/s prior to pump start, RD:
 1. Data collection & review; weight, food record
 2. Review of meal planning and CHO counting
 3. Validate ability to count carbs at home, at work or school, at restaurants and fast-food locations
 4. Goal setting

C. Follow-up visit, day of pump start, CDE (3–4 hours):
 1. Pump specifics; buttons, syringe filling, priming, insertion technique
 2. Initial settings
 3. Problem solving, alarms
 4. Restocking supplies
 5. Hypoglycemia and hyperglycemia management, DKA prevention
 6. Review of tasks and follow-up plan
 7. Status of goals and reinforcement of positive changes
 8. Resources: videos, books, pamphlets, web sites
 9. Goal setting
D. The CDE will emphasize that regulating basal and bolus rates and determining insulin to carb ratios is essential until the blood sugars are within the preset goal ranges. Telephone support for emergencies is available 24 hours per day.

E. Follow up visit, within one month or more frequently if needed, CDE:
 1. Data collection & review; blood sugar trends, meter download
 2. Review basal & bolus rates
 3. Review of site adequacy & insertion technique
 4. Confirm completion of basal rate testing
 5. Sick day management/DKA prevention.
 6. Status of goals and reinforcement of positive changes
 7. Goal setting

F. Follow-up visits with RD as needed.
 1. Data collection & review; blood sugar trends, food records
 2. Review of meal plan and carb counting
 3. Review of food adjustments for sick days and exercise
 4. Status of goals and reinforcement of positive changes
 5. Goal setting

G. Follow-up visits (quarterly for first year then annually) with CDE:
 1. Data collection & review; blood sugar trends, A1c results
 2. Self-management review and problem solving
 3. Status of goals and reinforcement of positive changes
 4. Goal setting
 5. If child, movement toward independence in diabetes care
INSULIN PUMP FOLLOW-UP

Patient Name __ **Date** ___________________

Certified Pump Trainer __

Pump Model ______________________________________ **Serial #** ______________________

BASIC REVIEW

<table>
<thead>
<tr>
<th>Basic Review</th>
<th>Site Change Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL FEATURES INSTRUCTED:

<table>
<thead>
<tr>
<th>Additional Feature</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BLOOD GLUCOSE RECORD

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>BG</th>
<th>CHO Grams</th>
<th>Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basal Rate Changes:
From 12 Midnight to ________________ : __________________________ units per hour
From ___________________ to ___________________ : ___________________ units per hour
From ___________________ to ___________________ : ___________________ units per hour
From ___________________ to ___________________ : ___________________ units per hour

Pump Trainer Signature __________________________________ Date ____________________

INSULIN PUMP CONTACTS

Trainer: __

Phone: __

Alternate trainer: ___

Alternate phone: ___
REFERENCES

Diabetic Foot Screen*

*performed every primary care visit (for complete foot exam details, see page 2 of 4)

<table>
<thead>
<tr>
<th>Condition</th>
<th>NO</th>
<th>YES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute swelling and/or Acute deformity</td>
<td></td>
<td></td>
<td>Page 4–A</td>
</tr>
<tr>
<td>Skin breakdown (ulcer)</td>
<td></td>
<td></td>
<td>Page 4–C</td>
</tr>
<tr>
<td>Callus – with deeper color changes</td>
<td></td>
<td></td>
<td>Page 4–B</td>
</tr>
<tr>
<td>Digital Deformity</td>
<td></td>
<td></td>
<td>Page 3–C</td>
</tr>
<tr>
<td>or chronic midfoot/rearfoot prominence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of amputation and/or ulceration</td>
<td></td>
<td></td>
<td>Page 3</td>
</tr>
<tr>
<td>Dystrophic Nails &/or Dry Skin</td>
<td></td>
<td></td>
<td>Page 3–D</td>
</tr>
<tr>
<td>Neuropathy: using 10-gram nylon monofilament</td>
<td></td>
<td></td>
<td>Page 3–B</td>
</tr>
<tr>
<td>performed yearly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 out of 10 sites imperceptible = “yes”</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assign Risk Category:

- **No Present Risk**
 - 0 No loss of protective sensation, no deformity.
- **Impending Risk**
 - 1 No loss of protective sensation. Deformity present.
- **High Risk**
 - 2 Loss of Protective sensation with or without weakness, deformity, callus, pre-ulcer or history of ulceration.

Foot Pulses:

<table>
<thead>
<tr>
<th>Right</th>
<th>Dorsalis Pedis</th>
<th>Palpable</th>
<th>Nonpalpable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior Tibialis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>Dorsalis Pedis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior Tibialis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from the National Foot Treatment Center LEAP Program

Resources & References:
2. University of Texas Health Science Center-San Antonio Texas-Department of Orthopedics-Division of Podiatry
3. Scott & White Clinic / Texas A&M University System Health Science Center-Department of Surgery. Division of Podiatry
Diabetic Foot Exam

Performed Initially at Diagnosis, Annually in Primary Care

Foot History
1. **Ulcers**: location, time to heal, wound care necessary for healing
2. **Infections**: type, bacteria involved, medical treatment necessary
3. **Amputations**: type, time to heal, modalities used in healing process
4. **Surgeries/Injuries**: type, location

Foot Exam

Vascular (Vasc)
1. Palpate DP, PT pulses (present or absent)
2. Temperature gradient: from ankle to toes, focal “hot spots”
3. General Color: pink, palor, rubor on dependency
4. Digital Capillary refill time: in seconds
5. ABI: for both DP & PT arteries (abnl if <0.85–0.9)

Neurologic (Neuro)
1. 10-gram nylon monofilament: test sites on feet as indicated on page 1
2. Vibration perception: via 128 Hz tuning fork (>10 secs) OR Biothesiometer (>25 volts)—tested at hallux
3. Tactile sensation (light touch): via cotton wool (dorsum of foot)
4. Reflexes: Achilles tendon

Dermatologic (Derm)
1. General skin turgor/texture
2. Focal lesions: calluses (debride to fully assess), cracks, pigmentation
3. Interdigital: calluses, maceration
4. Nails: incurvated, nail plate thickness, coloration, inappropriate self-care

Musculoskeletal (Msk)
1. General Range of Motion: ankle, subtalar, metatarsophalangeal
2. Foot type: rectus, pes planus, pes cavus, Charcot foot
3. Digits: hammer toes, claw toes, mallet toes, bunion/hallux abductovalgus
4. Bony prominences

Footwear
1. Type
2. Wear pattern: outsole and upper counter distortion
3. Insole inspection: foreign bodies, staining, excessive wear
4. Socks: foreign bodies, staining, excessive wear

Social
1. Tobacco/alcohol/drug use
2. Work environment/foot demands/footwear requirements
3. Physical activities: footwear used
4. Family support: marital status, spouse/family involvement in health
5. Education: diabetes self-management
Diabetic Foot Care/Referral Algorithm

Complete Diabetic Foot Exam (see page 2 of 4)

Normal (NL) Exam
- NL vasc
- NL neuro
- NL msk
- NL derm

Abnormal (ABNL)

A
- ABNL VASC
 - NL neuro
 - NL msk
 - NL derm

B
- NEURO or PM&R CONSULT
 - Consider: NCV, PSSD
 - Other causes: consider and rule out as indicated
 - If painful: consider pharmaceutical vs. surgical treatment

C
- COMPLETE BIOMECHANICAL EXAM
 - (Podiatrist, Orthopedist)
 - Discuss clinical significance
 - Treatment options: surgical, non-surgical

D
- Dystrophic (thick, discolored) toenails

MD/DO/DPM (or physician extender)
- DM FOOT EDUCATION
 - Patient/family (Diabetes Self-Management Education)
 - Verbal/written
 - Websites
 - Clinic phone numbers

VASCULAR CONSULT/TESTING
- Consider: PVR, Seg. pres., ABI, TCP02
- Intervention as indicated to re-establish blood flow

Documentation of vascular disease
- OR Post intervention with improvement

REPEAT Diabetic Foot Screen
- Per MD, DO, physician extender visits or DPM exam
- **REPEAT EVERY VISIT**

NORMAL testing-repeat per change in exam or onset symptoms

ABBREVIATIONS:
- MD: medical doctor
- DO: doctor of osteopathy
- DPM: doctor of podiatric medicine (Podiatrist)
- NL: normal
- ABNL: abnormal
- ABI: ankle/brachial index
- TCP02: transcutaneous oxygen pressure
- NCV: nerve conduction velocities
- PSSD: pressure specified sensory device

Diabetes Treatment Algorithms

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
High Risk Scenario and Ulcer Management

A. Peripheral Sensory Neuropathy & Unilateral Swelling / calor
 - x-ray exam
 - r/o infection
 Deep venous thrombosis (DVT)

 No skin breakdown or Lesion, no erythema
 Extremely High Probability of Charcot Arthropathy

 Treat as such until proven otherwise COMPLETE OFF-LOADING OF EXTREMITY to prevent severe foot/ankle deformity

 Skin Breakdown
 Treat as Ulcer 4-C (below)
 CAUTION
 Consider Double ETIOLOGY, OFF-LOAD to prevent severe foot/ankle deformity

B. Hyperkeratosis
 Follow pathways for associated abnl VASC, NEURO as indicated

 1. DEBRIDE callus
 2. Re-examine MSK exam for underlying cause – follow 3-C

 1. OFF-LOAD as needed (change insole, offloading devices as indicated)
 2. Assess Footwear & Insoles for causes, prevention

 1. Re-examine/debride q 3–7 days until skin normalized
 2. Progress back to normal activities/footwear based on etiology & risk factors

C. ULCER
 - assess/document

 Once healed = patient remains extremely HIGH RISK—frequent foot exams/education

 Immediate Debridement & Wound Care

 Grade Ulcer
 1. Assess size, depth, tissue levels
 2. X-ray exam

 Grade 1
 Superficial full thickness
 - not penetrating deeper than dermis

 Grade 2
 Deep ulcer (below dermis)
 - subcutaneous structures (fascia, muscle, tendon)

 Grade 3
 All subsequent layers involved
 - including bone and/or joint
 - assess probing to bone/soft tissue tracts

 OFF-LOAD (relieve pressure)
 - non-weightbearing essential
 - crutches, walkers, modified shoes/insoles, total contact cast, etc.

 TYPE of Ulcer
 - underlying etiology

 1. Neuropathic
 2. Ischemic
 3. Neuro-Ischemic

 Assess/manage causal pathway(s) 3–A, B, C

 INFECTION
 Assess: fever, WBC, ESR, erythema, color, drainage, necrosis, foreign material

 Culture & Sensitivity via
 - tissue at wound base
 - aspirating pus
 - swab base of wound after debridement
 - bone culture if suspect osteomyelitis
 - blood if systemic toxicity suspected

 Etiologic Agents
 - Aerobic gram positive cocci most frequent (staphylococcus)
 - Gram negative & anaerobes usually part of polymicrobial, chronic necrotic ulcers

 Antibiotics – consider:
 - local institutional and community susceptibility data when prescribing
 - published efficacy data

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
Foot Screening Mapping Examples

Touch-Test™ Sensory Evaluators

<table>
<thead>
<tr>
<th>Key</th>
<th>Monofilament Size</th>
<th>Representation</th>
<th>Dorsal Surface Threshold</th>
<th>Plantar Surface Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Callus</td>
<td>2.83</td>
<td>Green</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Pre-ulcer</td>
<td>3.61</td>
<td>Blue</td>
<td>Diminished light touch</td>
<td>Diminished light touch</td>
</tr>
<tr>
<td>Ulcer</td>
<td>4.31</td>
<td>Purple</td>
<td>Diminished protective sensation</td>
<td>Diminished protective sensation</td>
</tr>
<tr>
<td>4.56</td>
<td>Red</td>
<td>Red</td>
<td>Loss of protective sensation</td>
<td>Loss of protective sensation</td>
</tr>
<tr>
<td>5.07</td>
<td>Red</td>
<td>Red</td>
<td>Deep pressure sensation only</td>
<td>Deep pressure sensation only</td>
</tr>
<tr>
<td>6.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial Evaluation - Visit #1

RIGHT FOOT: Superficial ulcer on plantar surface over the second metatarsal head.

LEFT FOOT: Pre-ulcer proximal to the first dorsal web space.

Patient education, treatment intervention and wound care management initiated.

Re-evaluation - Visit #2

RIGHT FOOT: Ulcer healed. Improved to diminished protective sensation on plantar surface over the second metatarsal head.

LEFT FOOT: Pre-ulcer healed. Loss of protective sensation proximal to the first dorsal web space.

Re-evaluation - Visit #3

BOTH FEET: Diminished light touch sensation at toes and plantar surfaces.

LEFT FOOT: Improved to diminished protective sensation proximal to the first dorsal web space.

Re-evaluation - Visit #4

RIGHT FOOT: Normal throughout.

LEFT FOOT: Improved to diminished light touch sensation over dorsal web spaces.

Foot Screening Forms (NC127/9)

© 1999 North Coast Medical, Inc.
Recommendations for Treatment of Painful Peripheral Diabetic Neuropathy in Adults

Glycemic control goals should be met, if possible, prior to the start of pain medications.

Choice of agent should be based on:
- Side effects
- Comorbidities
- Cost
- Concomitant Medications
- Realistic expectations: Goal pain relief/partial relief

Evaluate for and treat secondary causes of peripheral neuropathy:
- Glucose control
- Macrocytic anemia, B12, Folic acid or Vitamin D deficiency
- Lifestyle changes-alcohol & smoking cessation
- Radiculopathy
- Electrophysiology assessment recommended if glucose control does not improve pain due to other potential etiologies

Medications Listed Alphabetically

Duloxetine
- Pros: May also treat depression
- Cons: May cause nausea, dizzy/drowsy
- Use with caution with other antidepressant medication
- Minimum Effective Dose 60 mg daily

Gabapentin
- Pros: Generic
- Cons: Saturable absorption gives lower absorption with increasing doses
- Example: Absorption at 900mg/day: 60%
- 3600mg/day: 33%
- Some risk of dizzy/drowsiness/weight gain
- Renal adjustment of dose may be needed
- Minimum Effective Dose 100-600 mg tid

Pregabalin
- Pros: No saturable absorption issues as with gabapentin
- Cons: Similar mechanism of action to gabapentin
- Some risk of dizzy/drowsiness/weight gain
- Renal adjustment of dose may be needed
- Minimum Effective Dose 50 mg tid or 150 mg hs

Tramadol
- Pros: Generic
- Cons: Nausea
- Dizziness
- Cautions: Contraindicated in known seizure disorder or with MAO inhibitors
- Caution with use with other serotonergic agents
- Avoid abrupt withdrawal
- Minimum Effective Dose 50 mg bid

Tricyclic antidepressants
- (TCA’s)
- Pros: Generic
- Cons: Anticholinergic side effects
- Cautions: Caution with use with other antidepressants
- Dose-related QTc prolongation
- Caution with other medications that inhibit CYP450 significantly
- Minimum Effective Dose 12.5-50 mg at bedtime

Other therapeutic agents with reported efficacy:
- Topical capsaicin, topical lidocaine, venlafaxine, bupropion, opioid derivatives, alpha-lipoic acid, MIRE therapy (Anodyne)
- Consider surgical intervention if other modalities fail

Diabetes continues to be a disease that disproportionately affects the elderly. In Texas, approximately 16.3% of people over age 65 have been diagnosed with diabetes, compared to approximately 8.1% of the overall population (BRFSS, 2003). Older adults with diabetes are more likely to experience complications from diabetes, thus, elderly patients with diabetes generate most of the costs of treating complications.

In particular the goals for treatment of the elderly person with diabetes should include:

1. Improving or maintaining health and functional status of the elderly with diabetes by maximizing glucose control.
2. Early detection and treatment of the complications of diabetes through organized, pro-active screening efforts.
3. Aggressive treatment of co-morbid risk factors, specifically hypertension and dyslipidemia.
4. Careful monitoring of therapy to avoid common problems in the elderly: polypharmacy, adverse drug events and inappropriate medication use.

Given that these goals are similar to those for treatment of diabetes in any age group, the patient’s stage in the disease process and their co-morbid conditions rather than age alone are most important in determining the appropriate course of treatment. The Council supports the basic recommendations summarized in the Minimum Practice Recommendations flow sheet with modifications that consider issues for elderly populations.

Health care providers and payers, including managed care organizations, should adopt the Texas Diabetes Council’s Minimum Practice Recommendations as the basis for managing diabetes in elderly patients.

Clinicians should strive to achieve the same levels of glycemic control (blood glucose, A1c), blood pressure and lipid control in elderly patients with diabetes as in younger ones. Targets may be modified in light of advanced complications, life-limiting co-morbid illness, or severe cognitive or functional impairments.

Given the high risk of secondary complications among elderly patients with diabetes, such as cardiovascular disease and lower extremity complications, clinicians should screen aggressively for and treat secondary complications.

Foot screening conducted at every visit includes not only visual inspection for lesions, infections, and calluses, but also assessment of pulses and use of monofilaments to further screen for neuropathy.

At each office visit, the clinician should specifically inquire about and consider comorbidities and the risks associated with polypharmacy, common problems in the elderly. Increased attention may be necessary in selecting and monitoring drug therapy in the elderly; for example, metformin may be contraindicated because of renal disease or heart failure.
Diabetes treatment algorithms

Diabetes self-management education for the elderly should take into account special instructional needs:

A) Elderly patients should be encouraged to include their caregiver or a family member in all educational sessions

B) Educational materials and methods should consider vision impairment, mobility, dexterity, mental state, functional status, and financial resources.

C) Elderly patients should be educated about possible effects of multiple medications and how concurrent illnesses may affect their treatment, self-care, and disease progression.

D) Preventing long-term complications of diabetes should be stressed.

Physiologic Changes in Glucose Metabolism

The elderly are prone to glucose intolerance and thus are at higher risk for developing diabetes. Fasting plasma glucose increases 1–2 mg/dl and the 2-hour postprandial glucose increases on average 8–20 mg/dl per decade of age after the age of 30–40 years. The changes to glucose intolerance have been attributed to age-related defects, post receptor defects in insulin action with decrease in velocity of glucose transport and/or other post receptor defects. There is also a depletion of intracellular pool of transporters or a defect in insulin-mediated translocation to the plasma membrane, along with impairment of the intracellular glucose metabolism beyond the defect in transporters.

Diagnostic Criteria and Goals

The diagnostic criteria and goals of therapy remain the same throughout the lifespan.

- Maintain quality of life by minimizing impacts of this disease
- Preserve functional capacity by preventing complications
- Minimize risk of hypoglycemia
- Meet realistic weight goals
- Avoid glucose readings > 200mg/dl
- For frail elderly, aim for fasting or bedtime glucose > 100mg/dl
- Safety precautions are imperative to prevent falls

Acute Complications are common in the Elderly

- Increased frequency of infections (respiratory, skin, urinary)/ Foot infections can lead to amputations
- Difficulty healing of breaks in the skin even without infection
- Hyperglycemic Hyperosmolar Nonketotic Syndrome
- DKA, not rare
- Hypoglycemia related to sulfonylurea or insulin treatment, especially with declining renal function

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
Atypical Presentation of Hyperglycemia in the Elderly

- A vague sense of not feeling oneself.
- Electrolyte imbalance and dehydration (blunted sense of thirst).
- Incontinence (masking polyuria).
- Appetite loss (due to depression, GI disease, or drug side effects).
- Fatigue (“just getting old”) and gradual profound loss (unnoticed for months).

Diabetes Symptoms Often Present Differently in Frail Elderly

<table>
<thead>
<tr>
<th>PATHOPHYSIOLOGIC STATE</th>
<th>TYPICAL PRESENTATION</th>
<th>COMMON PRESENTATION IN FRAIL ELDERLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperglycemia/hyperosmolarity</td>
<td>Polydipsia</td>
<td>Impaired vision, confusion, dehydration</td>
</tr>
<tr>
<td>Catabolism due to lack of insulin</td>
<td>Polyphagia</td>
<td>Weight loss, anorexia</td>
</tr>
<tr>
<td>Increased urinary volume due to glucosuria</td>
<td>Polyuria</td>
<td>Incontinence</td>
</tr>
</tbody>
</table>

Drugs That May Worsen Hyperglycemia in the Elderly

- Glucocorticoids
- Thiazide diuretics
- Phenytoin
- Lithium and Phenothiazines
- Estrogens
- Growth Hormone
- Isoniazid and Sympathomimetic agents
- Sugar-containing medications

Altered Presentation of Hypoglycemia in the Elderly

- Adrenergic symptoms: sweating, nervousness, tremor
- Neuroglycopenic symptoms: confusion
- Elderly lose the adrenergic symptoms (loss of autonomic nerve function) and have more profound neuroglycopenic symptoms than the young: reversible hemiparesis.
- This occurs late in the course of hypoglycemia.

Consequences of Severe Hypoglycemia:

- Tissue damage in elderly patients with impaired cardiac and cerebral circulation and serious chronic neurological consequences
Exacerbation of ischemic heart disease with anginal symptoms
Injuries including fractures
Death caused by hypoglycemia or its consequences

Cause of Serious or Fatal Hypoglycemia
- Skipping meals or not eating enough
- Error in dosage of sulfonylurea or insulin agents (10% of SFU-related hypoglycemia patients die)
- Excessive activity or exercising with a low blood sugar
- Alcohol abuse associated with skipped meals

Contraindications of Tight Control in the Elderly
- Dementia
- Autonomic nerve dysfunction
- Physical disability
- Social isolation or food restriction
- Chronic renal insufficiency
- Cirrhosis

Goal: Decrease hyperglycemic symptoms and prevent hyperosmolar state

Monitoring in the Elderly
- Most elderly incorrectly perform glucose and urine tests.
- Blood glucose monitoring correlates to A1c and is a better tool for titrating insulin.
- Assess albuminuria to assess cardiovascular status and treat HTN/Lipids.
- Feet should be screened/treated vigorously.

Medical Nutrition Therapy Goals and Points of Consideration
- Individualize dietary modifications. Consider preferences and household.
- Minimize unnecessary restrictions.
- Vitamin and mineral supplements may be indicated. Talk to physician prior to starting any supplement.
- Minimal weight loss for obese can be very effective. Limit intake of saturated and trans fats as much as possible. Saturated fat should consist of less than 7% of the total calories*.
- Unless medically contradicted, encourage drinking 2 quarts of water per day.

* Diabetes Care, 2007 Jan; 30 Suppl 1 S11
Diabetes treatment algorithms

- Recommend at least 20 grams of fiber per day to prevent constipation and reduce heart disease and cancer.
- Calcium intake should be encouraged. Those older than 70 years need 1,200 mg per day (32 ounces of milk equivalent).
- The recommended daily dose of Vitamin D and B-12 supplements for those over the age of 70 are 600 IU for Vitamin D and 2.4 micrograms for Vitamin B-12 (many elderly are unable to absorb Vitamin B-12 from food).
- Overdose of Vitamin A is more likely in the elderly, since Vitamin A is absorbed more readily and clears more slowly.
- Protein needs to make up greater part of elders’ meal plans since they usually take in fewer calories.

Exercise in Older Adults

- Consider risks and benefits of specific activities.
- Conduct pre-exercise evaluation (medical evaluation, ECG, exercise stress testing).
- Start with low intensity; slowly increase activity.
- Range-of-motion exercises, walking and swimming are great choices.
- Perform some light weight lifting (strength building).

Diabetes-Associated Changes That Affect Teaching-Learning

- Sensory — (visual acuity, lens clarity, night vision, hearing)
 - Impaired seeing syringe marks, perceiving blue-tone colors, interpreting home glucose monitoring instruments
 - Impaired communication may lead to non-adherence
- Cognition — memory, complex psychomotor tasks
 - May need repetition or caretaker assistance
 - May have difficulty with insulin administration (mixing insulins and injection, site rotation) and glucose monitoring
- Cutaneous — skin vibratory and thermal sensitivity, tactile sensitivity
 - Impaired ability to discern temperature and pressure
 - Potential for unawareness of burns and ischemia
 - Decreased manual dexterity for injections and glucose monitoring
- Urinary — decreased renal function, altered renal threshold for glucose
 - Potential for hypoglycemia, increasing drug half-life
 - Decreased utility of urine testing
Gustatory, Olfactory — taste, smell
- Reduced dietary adherence
Gastointestinal — thirst mechanism, motility, delayed gastric emptying
- Altered dietary intake
- Potential for hypoglycemia and dehydration
Vestibular-Proprioceptive-Equilibrium — sense of bodily orientation
- Vertigo and imbalance, potential for falls
- Decreased motivation for exercise/activity
Limit other medications that can increase risk of falls:
- Drowsiness
- Dizziness
- Urinary or fecal problems
Introduction

High Risk for Diabetes-related Complications

The elderly in long-term care facilities such as nursing homes or assisted living centers are at high risk for developing diabetes-related complications such as infections, non-healing wounds, amputations, myocardial infarction, strokes, and particularly, electrolyte depletion and dehydration that lead to high hospitalization rates in this population.

The elderly are often unable to detect and report problems due to age-related factors such as decreased cognition, sensation, mobility, communication, thirst response, that are typically associated with aging. Diabetes-related complications appear differently in the elderly, especially the frail. Often symptoms such as urinary frequency, nocturia or incontinence, volume depletion or dehydration, excessive skin alterations (ulcers), infections, or delayed wound healing, dental caries, periodontal disease, burning mouth, foot ulcers or deformities, and increased pain perception, rapid weight alteration, urinary frequency are symptoms that can be attributed to the aging process or noted as insignificant are often not associated with symptoms of complications secondary to diabetes.

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Glycemic Control</th>
<th>Pre-prandial and post-prandial glucose levels, A1c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes-Related of Complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assess Cardiovascular Disease Risk Factors or Conditions</td>
<td></td>
<td>Assess and treat atherosclerotic heart & cerebrovascular disease and/or cardiovascular complications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order electrocardiogram, echocardiogram, chest X-ray, arterial doppler studies of the legs, cognitive testing, computed tomography (CT), and brain magnetic resonance imaging (MRI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consider prescribing: enteric-coated aspirin, clopidogrel or aspirin/extended release dipyridamole, beta-blockers</td>
</tr>
</tbody>
</table>

Guidelines for Management of the Elderly with Diabetes in Long-Term Care Facilities
<table>
<thead>
<tr>
<th>GUIDELINES FOR DIABETES MANAGEMENT</th>
<th>INDIVIDUALIZE CARE ACCORDING TO: PREFERENCES, FUNCTIONAL AND MEDICAL STATUS, AND PROGNOSIS OF PATIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess Peripheral or Autonomic Neuropathy</td>
<td>Foot deformity, gait impairment</td>
</tr>
<tr>
<td>Psychological Assessment</td>
<td>Unrecognized depression, cognitive impairment</td>
</tr>
<tr>
<td>Determine Severity of Complications</td>
<td>CBC, basic serum chemistry, renal and hepatic function, careful review of facility glucose logs (Not necessary to do A1c for treatment regimen change)</td>
</tr>
<tr>
<td>Obtain History</td>
<td>Recent hospital records, community physicians & family members</td>
</tr>
<tr>
<td>Health Care Provider</td>
<td>Guidelines to notify health care provider should be established within institution and for patient</td>
</tr>
<tr>
<td></td>
<td>Glucose <60mg/dl or <75mg/dl with symptomatology of hypoglycemia (See “Hypoglycemia” in Diabetes Tool Kit)</td>
</tr>
<tr>
<td></td>
<td>Marked changes in glucose: If >250mg/dl along with change in status, condition</td>
</tr>
<tr>
<td></td>
<td>Glucose >300mg/dl for 3 consecutive days (Unless represents improvement to status or orders note method of management)</td>
</tr>
<tr>
<td></td>
<td>Difficulty with oral intake for > 2 days or more accompanied with fever, lethargy, abdominal pain, hypotension, respiratory distress, etc.</td>
</tr>
<tr>
<td>GUIDELINES FOR DIABETES MANAGEMENT</td>
<td>INDIVIDUALIZE CARE ACCORDING TO: PREFERENCES, FUNCTIONAL AND MEDICAL STATUS, AND PROGNOSIS OF PATIENT</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>See Algorithms:</td>
<td>Anti-Diabetes Agents</td>
</tr>
<tr>
<td>Glycemic Control for Type 2 Diabetes in Children & Adults</td>
<td>Metformin: Consider if obese, not recommended over age 80, use only with normal liver, renal function, do not use with CHF, acute illness</td>
</tr>
<tr>
<td>Insulin for Type 1 Diabetes in Children and Adults</td>
<td>Secretagogues, Sulfonylureas: Consider for non-obese or mildly obese</td>
</tr>
<tr>
<td>Insulin for Type 2 Diabetes in Children and Adults</td>
<td>Consider for insulin resistance, obese patient</td>
</tr>
<tr>
<td>Initiation of Insulin Therapy for Type 2 Diabetes in Children and Adults: A Simplified Approach</td>
<td>Thiazolidinediones: Not used with Class III, IV CHF</td>
</tr>
<tr>
<td>IV Insulin Infusion Protocol for Critically Ill Adult Patients in the ICU Setting</td>
<td>Normal liver function</td>
</tr>
<tr>
<td>ICU Insulin Orders</td>
<td>Alpha-Glucosidase Inhibitors: For patients near A1c goal (milder diabetes) and/or post-prandial hyperglycemia</td>
</tr>
<tr>
<td>Insulin Pump Therapy</td>
<td>Incretins: No information at this time for use in the elderly population</td>
</tr>
<tr>
<td>Prevention & Treatment of Complications</td>
<td>GUIDELINES FOR DIABETES MANAGEMENT</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>Treat with carbohydrate in the form of glucose, sucrose tablet or juice combined with light snack containing protein: Oral glucose paste, intramuscular glucagon, intravenous 50% dextrose</td>
</tr>
<tr>
<td>(See “Hypoglycemia,” Section, 8.1, in Diabetes Tool Kit, TDC)</td>
<td>Consider and assess for risks of hypoglycemia</td>
</tr>
<tr>
<td>Elderly (particularly frail) may exhibit atypical symptoms of hypoglycemia such as: disorientation, incoordination, altered personality, falls for unknown cause.</td>
<td>High doses, rapid acting insulin (with delayed meal consumption)</td>
</tr>
<tr>
<td>Morbidity is heightened with nocturnal hypoglycemia, cognitive and communication problems, chronic cardiac and liver disease, and adrenal or pituitary insufficiency.</td>
<td>Inconsistent calorie intake, hypoglycemia unawareness</td>
</tr>
</tbody>
</table>

Insulin & Hypoglycemia:

To decrease risk of hypoglycemia:

- Avoid prolonged use of “sliding-scale insulin” (graded increases in short- or rapid-acting insulin for every 50 to 100 mg/dl rise in blood glucose, usually administered before meals and at bedtime); increases morbidity, nursing time, not shown to improve metabolic control
- Sliding scale should be reserved for short-term glucose control post illness or surgery
- Fixed daily doses of insulin are recommended once daily insulin requirements are noted
- Endocrinologist consultant recommended for labile diabetes or for those on insulin pump
<table>
<thead>
<tr>
<th>GUIDELINES FOR DIABETES MANAGEMENT</th>
<th>INDIVIDUALIZE CARE ACCORDING TO: PREFERENCES, FUNCTIONAL AND MEDICAL STATUS, AND PROGNOSIS OF PATIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot Care</td>
<td>Assess skin and soft-tissue for alterations, sensation, color, temperature, circulation, presence of neuropathy, foot deformity, gait</td>
</tr>
<tr>
<td>See Foot Care Materials:</td>
<td>Order protective footwear with accommodating insoles</td>
</tr>
<tr>
<td>Foot Screening Mapping Examples</td>
<td>Assure that feet are examined during all scheduled visits</td>
</tr>
<tr>
<td>Diabetic Foot Screen</td>
<td>Teach preventive foot care to patients, families, nursing assistants</td>
</tr>
<tr>
<td>Diabetic Foot Exam</td>
<td>If foot at risk: Order Routine Podiatric care; daily foot care by patient and caregivers</td>
</tr>
<tr>
<td>Diabetic Foot Care/Referral</td>
<td>With mild infection or ulcer consider local dressings; baseline X-ray for bone integrity or osteomyelitis; podiatry or wound care referral as needed (so that wounds are treated, reassessed, and debrided on site if at all possible).</td>
</tr>
<tr>
<td>High Risk Scenario & Ulcer Management</td>
<td>Limb-threatening ulcer or infection: consider hospitalization; referral to podiatry or vascular surgery</td>
</tr>
</tbody>
</table>
Guidelines for Diabetes Management

<table>
<thead>
<tr>
<th>GUIDELINES FOR DIABETES MANAGEMENT</th>
<th>INDIVIDUALIZE CARE ACCORDING TO: PREFERENCES, FUNCTIONAL AND MEDICAL STATUS, AND PROGNOSIS OF PATIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Disease</td>
<td>Assessment of pain, infections, visual disturbance</td>
</tr>
<tr>
<td>(See Chronic complications sections in Diabetes Tool Kit, TDC, Section, 9.1)</td>
<td>Annual dilated eye examination if appropriate</td>
</tr>
<tr>
<td>Oral care</td>
<td>Diabetes, hypertension, and proteinuria control prevention</td>
</tr>
<tr>
<td>See Diabetes and Gum Disease, H9.13</td>
<td>Evaluate oral cavity for pain, signs of infection, eating, swallowing disorders.</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Consider dietitian consult, prophylactic antibiotics, and/or dental services</td>
</tr>
<tr>
<td>See Algorithm: Hypertension for Diabetes in Adults</td>
<td>Consider angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs)</td>
</tr>
<tr>
<td>Diabetic nephropathy</td>
<td>Consider dietitian and nephrologist consultation</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>Consider protein-restricted diet</td>
</tr>
<tr>
<td>See Algorithm: Lipid Treatment for Type 1 and Type 2 Diabetes in Adults</td>
<td>Utilize multiple methods to control of blood glucose and hypertension: angiotensin-converting enzyme inhibitors, angiotensin receptor blockers</td>
</tr>
<tr>
<td>Macrovacular Risk Reduction in Diabetes: Antiplatelet Therapy</td>
<td>Important to maintain control of lipids, blood pressure, blood glucose</td>
</tr>
<tr>
<td></td>
<td>Utilized lipid-lowering medication as applicable and appropriate</td>
</tr>
<tr>
<td></td>
<td>Note: Dietary restriction is not recommended in frail elderly patients</td>
</tr>
<tr>
<td>Immunization</td>
<td>Consider influenza & pneumococcal vaccine</td>
</tr>
<tr>
<td>An Interdisciplinary Approach</td>
<td>Health Care Provider Assessment and Team Intervention to evaluate functional and medical status, and rehabilitation needs</td>
</tr>
<tr>
<td>Team members needed include: consultations from dietitian, pharmacist, physical therapist, activity therapist, podiatrist, mental health professional as needed</td>
<td></td>
</tr>
</tbody>
</table>

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp
<table>
<thead>
<tr>
<th>Guidelines for Diabetes Management</th>
<th>Individualize Care According to: Preferences, Functional and Medical Status, and Prognosis of Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Nutrition Therapy</td>
<td>Dietitian Consult & Assessment Warranted</td>
</tr>
<tr>
<td></td>
<td>No “ADA” diet recommended; Assess for common problems such as, chewing difficulty, decreased appetite, undernourished, anorexia, depression, dependency, chewing difficulty, and chronic gastrointestinal complaints. See Algorithm: Nutrition Recommendations and Interventions for Diabetes</td>
</tr>
<tr>
<td>Diabetes Medical Nutrition Therapy & Prevention</td>
<td>“No concentrated sweets”: or “no added sugar” diets are inappropriate and do not contribute to good outcomes (J Am Dietetic Assoc 2001;101:1463-1466) and affect quality of life. Avoid calorie restricted diets particularly in those with major infections, major surgical procedures with multiple complications incurred Avoid fat and sugar-free restriction, except for obese and/or dyslipidemic residents: decreases palatability of food Meals should be prepared considering cultural, religious themes (Consider eating habits, food preferences, and food brought in by family members) Balanced meals and snacks with consistent carbohydrate content should be consumed at consistent times of the day Lean meats, nuts, eggs, fish, (6–8 servings/oz., 1 oz. Meat, fish, poultry, cheese Low & Non Fat Milk, Yogurt (2–3 servings, 1 cup milk, yogurt Dark, bright colored vegetables (6 servings ½ cooked, 1 cup raw) Dark Colored Fresh fruit (2 servings- small, size of tennis ball) Whole enriched fortified grains, beans and strachy vegetables (5–6 servings) Exercise regimens should be individualized with attention to diabetes related complications, preventing worsening of glycemic status, hypoglycemia and adjusting oral medication and/or insulin therapy according to optimize glucose and prevent hypoglycemia Special formulas are expensive, often unnecessary; the health care provider should pay close attention to glucose logs while making periodic pharmacological regimen adjustments</td>
</tr>
</tbody>
</table>
Key Points About Diabetes in LTC

- Diabetes management must be individualized: patients’ preferences, medical and functional status, and prognosis should be taken into consideration.
- Strict dietary restrictions should be replaced with a diet plan that incorporates eating habits and food preferences.
- Weight loss and increased activity may not be possible for many patients, and attempts to implement this may delay proper treatment.
- The physician is responsible for controlling blood glucose with pharmacological means if possible, to match food consumption.
- A thorough clinical evaluation of the patient is essential to determine the burden of diabetes and to formulate a treatment plan.
- An interdisciplinary effort is required to manage this complex disease.
- Daily attention to oral care and skin care may prevent complications overall. Specifically nutritional problems, pressure sores, foot ulcerations, and deep infections may be eliminated.
- Patient-specific treatment goals and reasons for not following recommended treatments should be documented in the medical record.
- Glycemic goals should be liberalized for the patient at risk of frequent hypoglycemia and for the patient who is at the end of life.
Screening Recommendations for IFG, IGT & DM

- Fasting Plasma Glucose (FPG) Annually:
 - if above 100 mg/dL confirm with repeat fasting glucose. Avoid OGTT if possible
 - if below 100 and high risk based on multiple risk factors and/or metabolic syndrome consider checking postload glucose

Diabetes Management

Goals of Therapy: consider comorbidities before setting targets:

- HbA1c < 7% if attainable without significant hypoglycemia
- BP <130/80 mmHg
- LDL <100 mg/dL (<70 if clinical vascular disease present)
- Aspirin therapy (if no contraindications—older adults are more susceptible for GI bleeds)
- Smoking cessation

Cardiovascular Risk Reduction

- Assess fasting lipids → Refer to TDC Algorithm on Lipid Management; use fibrates in caution due to renal insufficiency & consider 24 hour urine for Creatinine Clearance
- Obtain baseline EKG
- Consider stress testing based on appropriate evaluation of comorbidities & life expectancy
- Treat BP to goal
- Initiate ACE inhibitor or ARB if indicated
- Aspirin therapy if no contraindication

Footnotes:

1 Chronicologic and physiologic age may diverge after age 65 so patients need to be assessed individually. The presence of comorbidities impacts therapeutic approach: Life expectancy, CHF, Renal disease, Cognitive impairment, Depression, Incontinence, Injurious falls, Persistent pain, Hip fracture, Malignancy, Nutritional Status and Polypharmacy (see TDC Diabetes Toolkit). Certain individuals aged < 65 years may benefit from this approach. If a more aggressive approach is desired please see TDC Algorithm for Glucose Control for Type 2 DM in Children and Adults and Diabetes Toolkit.

2 Fasting may miss people who have postload hyperglycemia. If the person has the Metabohic Syndrome with FPG below 126 mg/dL, consider also obtaining a postload glucose level. For postload glucose a 2 hour postprandial is preferred. Avoid OGTT if possible due to associated risks in this population. Postprandial glucose and/or postprandial urinalysis for glycosuria is less sensitive but have a place within certain screening programs where other methods are not practical. IGT is a 2 hour postload of 140-199 mg/dL. DM is a 2 hour postload of > 200 mg/dL.

3 Consider an individual target of <6% if attainable without significant hypoglycemia (Please see TDC Algorithm for Glucose Control for Type 2 DM in Children and Adults). If unable to reach <7% without hypoglycemia then target is < 8%

4 Sulfonylureas (SUs) are not preferred due to risk of hypoglycemia; if an SU is used then it is recommended to avoid use of glyburide and chlorpropamide. TZDs must be used with caution in people with CAD or CHF. Refer to TDC Insulin Algorithm for insulin use.

See disclaimer at www.tdctoolkit.org/algorithms_and_guidelines.asp

Glucose goals not met within 3-6 months

Pharmacologic Therapy

Considerations in choosing agent: risk of hypoglycemia, comorbidities, polypharmacy, cost, life expectancy

Start with monotherapy: acarbose, BAR, DPP-4, incretin mimetic, insulin, meglinide, metformin, SU, TZD

Goals achieved: continue therapy

Not at goal within 3 months

Add second agent if on monotherapy

A1c every 3-6 months

Not at goal within 3-6 months

Consider adding third agent and/or referral to diabetes specialist

1 or 2 – Screening and Management of Hyperglycemia in the Geriatric Population – Approved 10/23/08
Abbreviations

AGI Alpha-Glucosidase Inhibitors
ACE inhibitor Angiotensin Converting Enzyme Inhibitor
ARB Angiotensin Receptor Blocker
BAR Bile Acid Resin (colesevelam)
CAD Coronary Artery Disease
DPP-4 Dipeptidyl peptidase-4 Inhibitor
FPG Fasting Plasma Glucose
IGF Impaired Fasting Glucose
IGT Impaired Glucose Tolerance
GAD* Glutamic Acid Decarboxylase
ICA* Islet Cell Antibodies
OGTT Oral Glucose Tolerance Test
SU Sulfonylurea
T2D Thiazolidinedione

*note: ICA and GAD antibodies usually take 1-2 weeks to be reported. If result is positive then patient has autoimmuned mediated diabetes and insulin needs to be considered and oral agents may need to be discontinued.

References

Hypoglycemia: Autonomic hypoglycemic warning signs may not be recognized in older adults due to changes in counter regulatory hormone response. Symptoms of hypoglycemia are often mistaken for co-existing medical conditions including postural hypotension, Parkinson’s, dementia, traumatic brain injury or CVA. Patients that cannot communicate verbally with caregivers are at greater risk.
www.texasdiabetescouncil.org
Managed Care Work Group of the Texas Diabetes Council.

www.texasdiabetescouncil.org
Managed Care Work Group of the Texas Diabetes Council.

www.texasdiabetescouncil.org

www.texasdiabetescouncil.org

Insulin Algorithm for Type 2 Diabetes Mellitus in Children and Adults. 2005.
www.texasdiabetescouncil.org

Initial Insulin Therapy for Type 2 Diabetes Mellitus in Children and Adults: A Simplified Approach. 2005.
www.texasdiabetescouncil.org

Exercise Algorithm for IFG/Type 2 Diabetes Prevention and Therapy. 2005.
www.texasdiabetescouncil.org

Weight Loss Algorithm for Overweight and Obese Adults. 2005.
www.texasdiabetescouncil.org

Prevention and Delay of Type 2 Diabetes in Children and Adults with IFG and/or IGT. 2005.

Weight Management Algorithm for Overweight Children and Adolescents. 2005.
www.texasdiabetescouncil.org

www.texasdiabetescouncil.org
Triplitt C, Jackson J, Sloan L, Spellman CW.

Glycemic Control Algorithm for Type 2 Diabetes Mellitus in Children and Adults. 2006.
www.texasdiabetescouncil.org

Insulin Algorithm for Type 1 Diabetes Mellitus in Children and Adults. 2006.
www.texasdiabetescouncil.org
IV Insulin Infusion Protocol for Critically Ill Adult Patients in the ICU Setting. 2006.
www.texasdiabetescouncil.org

Lipid Treatment Algorithm for Type 1 and Type 2 Diabetes Mellitus in Adults. 2006.
www.texasdiabetescouncil.org
Wyne KL, Spellman CW, Jackson J, Triplitt C, Sloan L, Hollander P.

Medical Nutrition Algorithm IFG/Type 2 Diabetes Prevention & Therapy. 2006.
www.texasdiabetescouncil.org

Diabetic Foot Care / Referral Algorithm. 2006.
www.texasdiabetescouncil.org

Hypertension Algorithm for Diabetes Mellitus in Adults. 2007.
www.texasdiabetescouncil.org
Triplitt C, Sloan L, Hollander P, Spellman CW.

Triplitt C, Spellman CW, Wyne KL, Greene S, Sloan L, LaFontaine J.

Glycemic Control Algorithm for Type 2 Diabetes in Children and Adults. 2007.
Spellman CW, Wyne KL, Triplitt C, Greene S, Sloan L.

IV Insulin Infusion Protocol for Critically Ill Adult Patients in the ICU Setting. 2007.
www.texasdiabetescouncil.org
Spellman CW, Triplitt C, Wyne KL, Greene S.

www.texasdiabetescouncil.org
Spellman CW, Wyne KL, Triplitt C, Greene S.

Lipid Treatment Algorithm for Type 1 and Type 2 Diabetes Mellitus in Adults. 2008.
www.texasdiabetescouncil.org
Wyne KL, Triplitt C, Spellman CW, Greene S, Hollander P.

Transition Algorithm From I.V. to S.Q. Insulin For Patients With Diabetes or Hyperglycemia. 2008.
www.texasdiabetescouncil.org

www.texasdiabetescouncil.org

Screening and Management of Hyperglycemia in the Geriatric Population
www.texasdiabetescouncil.org
Wyne KL, Spellman CW, Triplitt C, Greene S, Hollander P, Sloan L.